


NASA TT F-477 

SCATTERING OF LIGHT IN A TURBID MEDIUM 

By K. S. Shifrin 

Translation of "Rasseyaniye Sveta v Mutnoy Srede." 
Gosudar stvennoye Izdatel' stvo Tekhniko - Teoreticheskoy Literatury , 

Moscow-Leningrad, 1951. 

NATIONAL AERONAUT ICs AN D SPACE ADMINISTRATION 

For sale by the Clearinghouse far Federal Scientific and Technic01 Information 
Springfield, Virginia 22151 - CFSTI price $3.00 





TABLE OF CONTENTS 

Page 

Introduction ......................................................... 1 
CHAPTER I GENERAL CHARACTERISTICS OF THE PROBLEM .................... 

1. Introduction ................................................... 3 
2. Fundamental Equations and Boundary Conditions .................. 7 
3 .  Linear Characteristics ......................................... 11 
4. Optical Constants .............................................. 17 

1. Potentials ..................................................... 25 
2. Solution of Equations for the Potentials ....................... 29 
3 .  Diffracted Fields and Intensities .............................. 33 
4 .  Coefficients of Scattering and Attenuation ..................... 37 

2. Angular Functions. Convergence ................................ 47 

CHAPTER I1 FUNDAMENTAL FORMULAS 

CHAPTER 111 PARTIAL WAVES 
1. Amplitudes of Partial Waves .................................... 4 1  

3 .  Two Methods for Writing the Fundamental Formulas ............... 51 
4 .  One Error in the Formulas for Intensities ...................... 56 

1. Rayleigh Formula ............................................... 58 

3 .  Resonance. Eigen Oscillations ................................. 67' 

2. Reflected and Refracted Light .................................. 7 4  
3 .  Light Undergoing Internal Reflections. Rainbows ............... 7 9  

CHAPTER IV SMALL PARTICLES 

2. Absolutely Reflecting Particle ................................. 64 

CHAPTER V LARGE PARTICLES 
1. Derivatives of Rays ............................................ 7 1  

4 .  Energy Distribution Between Different Fluxes ................... 85 
5. Scattering Indicatrix and Degree o f  Polarization for Scattered 

Light .......................................................... 88 
6 .  Nontransparent Particles ....................................... 97 

1. Coefficients of Attenuation and Scattering ..................... 99 

3 .  Scattering Indicatrix .......................................... 114 

1. Attenuation Coefficient ........................................ 124  
2 .  134  
3 .  Scattering Indicatrix .......................................... 146 

CHAPTER VI ABSORBING AND FULLY REFLECTING PARTICLES HAVING ANY DIMENSIONS 

2. Asymptotic Value of the Attenuation Coefficient for Large 
Particles ...................................................... 104  

4 .  Radiation ...................................................... 120 
CHAPTER VI1 TRANSPARENT PARTICLES HAVING ANY DIMENSIONS 

Geometric Optics of a Sphere as the Limiting Case of Diffraction. 

CHAPTER VI11 PARTICLES WITH ELECTRICAL PROPERTIES DEVIATING SLIGHTLY 
FROM THE SURROUNDING MEDIUM PROPERTIES 

1. Fundamental Equation .......................................... 166  

3 .  
2 .  First Approximation for the Sphere ............................ 1 7 1  

Comparable with the Wavelength ................................ 179 
Second Approximation for a Sphere Whose Dimensions are 

iii 



4 .  Nonspherical Particles ...................................... 185 

CONCLUSION ......................................................... 203 
APPEN'DIX ........................................................... 205 

5. Scattering Coherence ........................................ 196 

iv 



SCATTERING OF LIGHT IN A TURBID MEDIUM 

K. S. S h i f r i n  

Introduct ion - / 5* 

pis book is  devoted t o  a systematic  d i scuss ion  of t he  theory of scatter- 
ing and absorpt ibn of plane electromagnetic waves by p a r t i c l e s  of a tu rb id  
medium. 
i n  general ,  almost exhausts t h e  o p t i c s  of t rans lucent  bodies -- i .e. ,  those 
bodies i n  which s c a t t e r i n g  i s  infrequent .  

This problem, which l ies at t h e  b a s i s  of t h e  o p t i c s  of t u rb id  media 

The problem of mul t ip le  s c a t t e r i n g  is  not  discussed i n  t h i s  book. 

Inves t iga t ions  of a wide class of atmospheric-optical  phenomena, o p t i c s  
of t h e  sea, co l lo id  so lu t ions  and aerosols ,  as w e l l  as seve ra l  meteorological,  
as t rophys ica l ,  and appl ied problems represent  d i f f e r e n t  aspec ts  and areas of 
app l i ca t ion -%or  t h e  theory presented below. 

There has been a formal. so lu t ion  of t h e  classical problem of s c a t t e r i n g  
of electromagnetic waves by particles having a sphe r i ca l  form f o r  many years .  
However, w e  cannot be s a t i s f i e d  with a so lu t ion  which is wr i t t en  i n  the  form of 
an i n f i n i t e  series. The compilation of survey formulas, graphs,  and t a b l e s  i s  
of g r e a t  importance. 
second aspect  of t h e  matter. 

W e  have attempted t o  d i r e c t  our  main a t t e n t i o n  t o  t h i s  

In t e r f e rence  between f i e l d s  sca t t e red  by ind iv idua l  particles may a l s o  be 
of importance i n  c e r t a i n  cases, concurrently with s i n g l e  sca t t e r ing .  
ana lys i s  of t h e  problem f o r  t rans lucent  bodies is  contained i n  t h e  book. 

A general  

I n  addi t ion  t o  the  theory,  t he  book b r i e f l y  presents  experimental da ta .  

We s h a l l  b r i e f l y  d iscuss  the  contents  of each chapter .  

The per turba t ion  introduced by a particle i n t o  a f i e l d  may be  determined 
as 
of t he  surrounding medium, as w e l l  as its dimensions. 
m e t e r  corresponds t o  each of these  s i t u a t i o n s .  When d is t inguish ing  between 
p a r t i c u l a r  areas of t he  problem, w e  must i n d i c a t e  t h e  region i n  which both para- 
meters change.1 

the  devia t ion  of t h e  p a r t i c l e ' s  e l e c t r i c a l  p rope r t i e s  from t h e  p rope r t i e s  
A dimensionless para- 

Therefore, i n  t h e  f i r s t  chapter  w e  descr ibe  both t h e  l i n e a r  dimensions of /6 
t h e  p a r t i c l e s ,  and t h e i r  electrical c h a r a c t e r i s t i c s ,  along with a general  form- 
u l a t i o n  of t h e  problem. 

* Numbers i n  t h e  margin i n d i c a t e  paginat ion i n  t h e  o r i g i n a l  fore ign  text. 

(l)The following, f requent ly  encountered statement i l l u s t r a t e s  t he  f a c t  
t h a t  t h i s  assumption i s  outdated: "A small p a r t i c l e  has a Rayleigh s c a t t e r i n g  
ind ica t r ix" .  
appl ied t o  substances with a l a r g e  r e f r a c t i v e  index. 

I n  Chapter I V  we  show t h a t  t h i s  statement i s  erroneous when 

1 



The d i f f i c u l t i e s  encountered by the  researcher  who might wish t o  apply 
the  formulas f o r  t he  s c a t t e r i n g  theory t o  s p e c i f i c  problems are r e l a t e d  t o  a 
s i g n i f i c a n t  ex ten t  with t h e  confusion ex i s t ing  i n  t h e  l i t e r a t u r e  on t h i s  prob- 
l e m ,  The authors  of d i f f e r e n t  s t u d i e s  f requent ly  employ formulas which d i f f e r  
from each o ther .  Sometimes these  are a c t u a l l y  d i f f e r e n t  formulas, and i n  o the r  
cases they d i f f e r  only i n  terms of the  notat ion.  Many authors have wr i t t en  t h e  
bas i c  formulas, employing t h e  nota t ion  of s p e c i a l  func t ions  of t h e  problem 
introduced by M i e .  Other authors employ present-day nota t ion .  Numerous 
mistakes and e r r o r s  are encountered i n  d i f f e r e n t  authors  when 
they der ive  t h e  b a s i c  formulas and analyze them. 
necess i ty  of a systematic  discussion of the  problem and subsequent der iva t ion  
of t h e  b a s i c  formulas. 

I n  1946 w e  r ea l i zed  t h e  

This de r iva t ion  comprises t h e  second chapter .  

The t h i r d  chapter i s  an aux i l i a ry  chapter.  

I n  t h i s  chapter w e  a l s o  present  a cor rec t ion  of one general  e r r o r  which 

It contains  several r e l a t ion -  
sh ips  which are necessary f o r  p r a c t i c a l  computations i n  terms of general  formu- 
las. 
i s  assumed i n  the  formulas f o r  i n t e n s i t y .  

Chapter IV is devoted t o  extremely small p a r t i c l e s .  (macroscopic globules 
whose r a d i i  are considerably less than the  s c a t t e r e d  wave lengths) .  

The t r a n s i t i o n  from one l imi t ing  case t o  another which we  have s tudied  is 
of g rea t  i n t e r e s t ,  along with an ana lys i s  of t h e  two l imi t ing  cases descr ibing 
the  s c a t t e r i n g  by s m a l l  p a r t i c l e s .  
resonance phenomena. 

We have thus discovered q u i t e  i n t e r e s t i n g  

Chapter V is devoted t o  extremely l a r g e  particles. 

I n  con t r a s t  t o  Chapters I V ,  V I ,  V I I ,  where the ana lys i s  of d i f f e r e n t  
p a r t i c u l a r  cases is  introduced as viewed from the  general  formulas given i n  
Chapter 11, f o r  t h e  sake of c l a r i t y  w e  s h a l l  r e s o r t  d i r e c t l y  t o  t h e  formulas of 
Fresnel  and the  l a w s  of geometrical op t ics .  I n  Chapter V I I ,  however, w e  present/-/ 
a strict der iva t ion  of t h e  formulas of geometrical op t i c s  of a sphere,  d i r e c t l y  
from t h e  general  d i f f r a c t i o n  formulas. 

W e  g ive  the  numerical da ta  f o r  s c a t t e r i n g  of v i s i b l e  l i g h t  by drops of 
water. 

Chapters V I  and V I 1  p e r t a i n  t o  p a r t i c l e s  having any dimensions. 

Chapter V I  i nves t iga t e s  t h e  r e s u l t s  derived from t abu la t ing  t h e  p rec i se  
formulas f o r  absorbed and completely r e f l ec t ed  p a r t i c l e s .  The f a c t  t h a t  w e  
have el iminated confusion with t h e  l imi t ing  va lue  of t h e  a t t enua t ion  f a c t o r  and 
t h a t  w e  have s t r i c t l y  analyzed the  physical  causes f o r  t h e  "duplication" of 
t h i s  f a c t o r  is  of g rea t  importance. 
f r a c t i o n  phenomena i n  thermal r ad ia t ion  of s m a l l  p a r t i c l e s  and a simple approx- 
imation method f o r  computing the  i n d i c a t r i x  of enormous opaque p a r t i c l e s  are of 
i n t e r e s t .  

In our opinion, t h e  considerat ion of d i f -  

Chapter V I 1  is devoted t o  t ransparent  p a r t i c l e s .  

The r e s u l t s  derived from tabula t ing  the  p rec i se  formulas are analyzed, 
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and the  experimental da t a  f o r  t h e  geophysical problems are inves t iga ted .  
proximation method which we  developed f o r  ca l cu la t ing  t h e  s c a t t e r i n g  i n d i c a t r i x  
of enormous t ransparent  p a r t i c l e s  i s  of importance. The complex computational 
problem of t h e  i n d i c a t r i x  of a l a r g e  t ransparent  sphere is thus p r a c t i c a l l y  
solved. 

An ap- 

Chapter V I 1 1  p resents  a method f o r  analyzing t h e  problem. 

The s impl i c i ty  of t he  formulas obtained represents  an important 

I n  p r inc ip l e ,  
t h i s  method d i f f e r s  from the  method of cu rv i l i nea r  coordinates presented i n  
Chapter 11. 
f e a t u r e  of t h e  method which w e  developed. 
along with spheres whose dimensions are comparable t o  t h e  wave length.  I n  
addi t ion ,  i n  Chapter V I 1 1  w e  i nves t iga t e  the p r i n c i p a l  problem of coherent 
s c a t t e r i n g  by a system of p a r t i c l e s .  

It enables us t o  examine e l l i p s o i d s ,  

A t a b l e  of angular funct ions which w e  compiled i s  presented a t  t h e  end of 
The use of t h i s  t a b l e  s i g n i f i c a n t l y  f a c i l i t a t e s  t h e  work of t he  t h e  book. 

reader  i n  tabula t ing  t h e  p rec i se  i n d i c a t r i x e s  i n  t h e  e n t i r e  "middle" region of 
t h e  dimensions where simple formulas f o r  s m a l l  and l a r g e  particles, which are 
presented i n  t h e  book, cannot be employed. Thus, t h e  e n t i r e  spectrum of 
p a r t i c l e  dimensions i s  encompassed. 

This enumeration does not  exhaust t h e  contents  of t h e  book and, i n  addi t ion ,  
/8 does not  exhaust t h e  circle of problems per ta in ing  t o  t h e  problem under con- 

s ide ra t ion ,  which could be  found on t h e  pages of our book. 
space has compelled us t o  omit t hese  problems and t o  d iscuss  o thers  i n  an 
excessively c u r t a i l e d  form. A c e r t a i n  j u s t i f i c a t i o n  f o r  t hese  drawbacks, i t  
seems t o  us ,  is  t h e  f a c t  t h a t  t h i s  book represents  t he  f i r s t  systematic  dis-  
cussion of t he  problem both i n  Soviet  l i t e r a t u r e ,  and i n  fore ign  l i t e r a t u r e .  
W e  have c a l l e d  p a r t i c u l a r  a t t e n t i o n  t o  t h e  work of Soviet  authors ,  whose r o l e  
i s  usua l ly  inadequately presented. 

The l i m i t a t i o n  of 

The s e l e c t i o n  of t h e  material w a s  d i c t a t ed  by an a t t empt  t o  present  a 
p i c tu re  which i s  as clear and well-ordered as possible .  I n  our  opinion, an 
ana lys i s  of t h e  d i f f e r e n t  cont rad ic t ions ,  which w a s  performed by developing 
seve ra l  po in t s  and by new computations, has made it poss ib le  t o  approach t h e  
so lu t ion  of t h i s  problem. 

The author  is indebted t o  a s soc ia t e  member of t h e  Academy of Sciences, 
Professor  Ya.  I. Frenkel ' ;  a s soc ia t e  member, Professor  T. P. Kravts; academician 
V. V. Shuleykin; Professor  A. A. Gershun, and professor  M. I. Yudin f o r  dis-  
cussing ind iv idua l  problems. 

CHAPTER I 

GENERAL CHARACTERISTICS OF THE PROBLEM 

§ 1. Int roduct ion  

The propagation of electromagnetic waves i n  a real body i s  accompanied /9 
by t h e i r  s c a t t e r i n g  and absorption. 
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The o p t i c a l  inhomogenity of a body is t h e  reason r'or t h e  s c a t t e r i n g  of 
l i g h t .  This b a s i c  assumption w a s  es tab l i shed  by L. I. Mandel'shtamn i n  1907 (Ref. 
1) * 

W e  should poin t  out t h a t  w e  are discussing bodies whose o p t i c a l  inhomo- 
g e n i t i e s  are d i s t r i b u t e d  a t  random. These l o c a l l y  inhomogeneous bodies,  par- 
t i c u l a r l y  those which show l i g h t  s c a t t e r i n g ,  are ca l l ed  tu rb id  bodies.1 

Dif fe ren t  f a c t o r s  may cause o p t i c a l  inhomogeniety. For example, t hese  
f a c t o r s  may be f l u c t u a t i o n s  of densi ty  caused by thermal motion, or  extraneous 
macroscopic p a r t i c l e s  loca ted  i n  the  body, etc. 

This book is devoted t o  an examination of t he  theory of phenomena caused 
by t h e  presence of extraneous macroscopic p a r t i c l e s  i n  t h e  body. 
no t  i n v e s t i g a t e  phenomena accompaying t h e  propagation of l i g h t  i n  o p t i c a l l y  
homogeneous bodies  (absorpt ion i n  molecules, etc.) as w e l l  as o ther  phenomena 
produced by dens i ty  f luc tua t ions .  The reader w i l l  f i nd  the  theory and descrip- 
t i o n  of these  phenomena, f o r  example, i n  t h e  course of G. S .  Landsberg (Ref. 2 ) ,  
and i n  g r e a t e r  d e t a i l  i n  h i s  art icles (Ref. 3,  4 ) .  

The book does 

The s c a t t e r i n g  of l i g h t  leads  t o  s i d e  s c a t t e r i n g  of l i g h t .  This may be 
caused by photoluminescence. An ar t ic le  by S .  I. Vavilov (Ref. 5) is  devoted 
t o  analyzing the  r e l a t ionsh ip  between both types of phenomena. 

An ana lys i s  of s i n g l e  s c a t t e r i n g  l i es  a t  t h e  b a s i s  of t he  theory of l i g h t  
s c a t t e r i n g  i n  tu rb id  media. 
a l s o  be of importance along with s i n g l e  sca t t e r ing .  
d iv ide  a l l  t u rb id  bodies i n t o  two classes: s t rongly  turb id  bodies ,  whose theory 
requi res  allowance f o r  mul t ip le  s c a t t e r i n g ,  and weakly tu rb id  bodies ,  o r  t rans-  
lucent  bodies ,  whose theory does not  n e c e s s i t a t e  allowance f o r  mul t ip le  s c a t t e r -  
ing.  

However, i n  c e r t a i n  cases mul t ip le  s c a t t e r i n g  may 
This f a c t o r  leads  us t o  

This book is primari ly  devoted t o  analyzing s i n g l e  sca t t e r ing .  This prob- 
I m p r a c t i c a l l y  exhausts t h e  theory of t rans lucent  bodies ,  and lies at  t h e  b a s i s  
of t he  o p t i c s  of s t rongly  tu rb id  bodies.  

The s c a t t e r i n g  theory developed below has a wide range of appl ica t ion .  

The o p t i c s  of clouds,  fogs,  r a i n ,  air  aerosol ,  and many o ther  p r a c t i c a l  
problems are c lose ly  r e l a t e d  t o  these  problems ( v i s i b i l i t y ,  theory of photo- 
graphing far-removed objec ts ,  etc.) and comprise t h e  meteorological aspect  of 
t he  problem. 

(''Locally homogeneous bodies,  i .e. ,  bodies with constant o r  slowly chang- 
ing o p t i c a l  p rope r t i e s ,  do not  scatter l i g h t .  I n  the  theory of r e f r a c t i o n  
and mirages, f o r  example, a i r  whose inhomogeneous dens i ty  d i s t r i b u t i o n  causes 
the  curvature  of l i g h t  rays  is regarded as such a body. W e  might add t h a t  w e  
w i l l  d i scuss  t h e  concept of t u r b i d i t y  i n  9 3 of t h i s  chapter.  
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This thus  pe r t a ins  t o  the  problem of determining o p t i c a l  ind ica t ions  of 
a change i n  t h e  weather, i.e., t he  problem of e s t ab l i sh ing  q u a n t i t a t i v e  r e l a t ion -  
sh ips  between o p t i c a l  and thermodynamic c h a r a c t e r i s t i c s .  These indica- 
t i ons  now cons is t  of s e l e c t i n g  empir ical  r u l e s  i n  t h e  major i ty  of cases. 

W e  s h a l l  not  d i scuss  these  ru l e s  here.  Thesreader w i l l  f i nd  a g rea t  
amount of information on t h i s  sub jec t  i n  the  book by P. I. Brounov (Ref. 6 ) ,  and 
i n  t h e  works of N. N. K a l i t i n  [see, f o r  example, (Ref. 7) and o thers1 . l  

The theory developed below f o r  o p t i c a l  methods of probing t h e  atmosphere 
is of s i g n i f i c a n t  importance (Ref. 28, 29). 

The propagation of l i g h t  i n  the  depths of t he  sea, o p t i c a l  methods of study- 
ing sea water, and o the r  problems determine t h e  i n t e r e s t  i n  a s c a t t e r i n g  theory 
f o r  o p t i c s  of t he  sea. 

The problem of the  concealed photographic image, o p t i c a l  methods f o r  in-  /11 
ves t iga t ing  co l lo id  systems and aerosols ,  and t h e  problems of i n t r a s t e l l a r  
p a r t i c l e s  and zodiacal  l i g h t  i n  as t rophysics  are r e l a t e d  t o  t h i s  theory.  

The problems enumerated above are f a r  from exhausting t h e  list of problems 
and s t u d i e s  r e l a t e d  t o  s c a t t e r i n g  of l i g h t  by p a r t i c l e s .  
problem is  of g rea t  importance f o r  determining t h e  e f f i c i e n t  opera t iona l  regime 
of the  Wilson Chamber [see (Ref. 9) and o the r s ] ,  f o r  the  o p t i c a l  p rope r t i e s  of 
granular  metallic f i lms2 ,  f o r  studying f i n e  powders , co l lo id  l i g h t  f i l t e r s ,  e t c .  

For example, t h i s  

We s h a l l  now present  c e r t a i n  h i s t o r i c a l  f a c t s .  

Important r e s u l t s  have been obtained by Soviet  s c i e n t i s t s  i n  developing 
the  problem discussed i n  t h i s  book. 

Even before  the  Great October S o c i a l i s t  Revolution, w e  had t h e  s tud ie s  of 
0. D. Khvol'son on mul t ip l e  s c a t t e r i n g  of l i g h t  by particles, t h e  s t u d i e s  of 
L. I. Mandel'shtam on t h e  causes of l i g h t  s c a t t e r i n g  i n  genera l ,  and t h e  s t u d i e s  
of T. P. Kravts on t h e  s c a t t e r i n g  of l i g h t  i n  so lu t ions .  

I n  p a r t i c u l a r ,  important r e s u l t s  were obtained i n  t h e  Soviet  period. 

V. V.Shuleykin s tudied  the  s c a t t e r i n g  of l i g h t  by p a r t i c l e s .  Along with 
tabula t ing  p rec i se  formulas, he  inves t iga ted  t h e  t r a n s i t i o n  from s m a l l  p a r t i c l e s  
t o  extremely l a r g e  p a r t i c l e s ,  and extensively appl ied t h e  r e s u l t s  of t h i s  study 
toward explaining t h e  o p t i c a l  phenomena i n  t h e  sea and t h e  atmosphere. 

~ 

("The o ld  observat ion of Cornu (Ref. 8) i s  a l s o  of i n t e r e s t .  H e  estab- 
l i shed  the  f a c t  t h a t  rap id  changes i n  t h e  po la r i za t ion  of celestial  l i g h t  pre- 
cede a sharp change i n  t h e  weather. 
any o the r  i nd ica t ion  of a change i n  t h e  weather. 

These phenomena occur much earlier than 

(2)These f i lms  were f i r s t  s tud ied  by t h e  Kiev phys ic i s t  I. I. Kosonogov 
(Ref. 10) and provide an example of two-dimensional s o l .  The t r a c k  i n  the  
Wilson chamber may be regarded as a one-dimensional sol. 
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G. I. Pokrovskiy performed numerous labora tory  s t u d i e s  deal ing with d i f f e r e n t  
problems on t h e  o p t i c s  of t u rb id  media. N. N. K a l i t i n  performed numerous 
observat ions on t h e  d i s t r i b u t i o n  of t h e  br ightness  of t h e  sky. 
r e s u l t s  derived from these  observations t o  t h e  s c a t t e r i n g  of l i g h t  by p a r t i c l e s .  
T. P. Kravets and M. V. Savost'yanwa performed numerous s tud ie s  on the scatter- 
ing and absorpt ion of l i g h t  by s m a l l  metallic p a r t i c l e s .  The r e s u l t s  of t hese  
s t u d i e s  l i e  a t  the  bas i s  of t h e  theory on t h e  na tu re  of t h e  concealed photo- 
graphic  image. A. A. Lebedev performed important s tud ie s  on the  t ransmit tance 

inves t iga t ions  l e d  t o  t h e  important hypothesis regarding t h e  ex is tence  of "sub- 
microscopic" p a r t i c l e s .  
t he  atmosphere by means of a projected beam is a l s o  of importance. A. A. 
Gershun performed important i nves t iga t ions  on l i g h t  s c a t t e r i n g  i n  sea water, on 
mul t ip le  s c a t t e r i n g ,  and on the  theory of the  l i g h t  f i e l d .  On the  b a s i s  of 
these  s tud ie s ,  A.  A. Gershun obtained important r e s u l t s  i n  solving many p r a c t i c a l  
problems. The inves t iga t ions  by V. G. Fesenkov provided i n t e r e s t i n g  appl ica t ions  
f o r  t he  theory of l i g h t  s c a t t e r i n g  t o  the  ana lys i s  of many as t rophys ica l  prob- 
l e m s .  
area w e r e  obtained by V. A. Ambartsumian, Ye. S. Kuznetsov, and V. V. Sobolev. 

H e  r e l a t ed  the  

of fogs.  I. A. Khvostikov s tudied  the  s c a t t e r i n g  of l i g h t  i n  fogs.  These - 112 

The method developed by I. A. Khvostikov f o r  probing 

New methods of studying mul t ip l e  s c a t t e r i n g  and important r e s u l t s  i n  t h i s  

V. V. Sharonov, N. G. Boldyrev, V. A. Berezkin, and V. A. Faas s i g n i f i c a n t l y  
developed and advanced t h e  problem of v i s i b i l i t y  -- a problem which is important 
i n  p r a c t i c e  and which is  c lose ly  r e l a t e d  t o  t h e  s c a t t e r i n g  theory.  
V. V. Sharonov (Ref. 27) discussed t h e  problems of v i s i b i l i t y  i n  r e l a t i o n  t o  
the  theory of s ca t t e r ing .  

The book by 

Methods, which w e r e  new i n  p r inc ip l e ,  dea l ing  with t h e  problem of d i f -  
f r a c t i o n  i n  a sphere w e r e  developed recent ly  by V.  A. Fok (Ref. 11, 1 2 ) .  The 
earlier work of V. A. Fok i s  a l s o  of importance, along with these  s tud ie s .  I n  
t h i s  work , he  provides a new asymptotic representa t ion  f o r  Bessel funct ions.  
The formulas of V. A. Fok and t h e i r  appl ica t ion  t o  our  problem w i l l  be found by 
the  reader i n  Chapters I11 and V I I .  

Our presenta t ion  is f a r  from exhaustive.  I n  c e r t a i n  sec t ions  of t h e  book, 
w e  have discussed i n  d e t a i l  t he  works of some of t h e  authors  mentioned above, 
and have a l s o  turned t o  t h e  s t u d i e s  of o ther  Soviet  authors.  

W e  would l i k e  t o  poin t  out  t h a t ,  along with t h e  s p e c i f i c  problems of t h e  
o p t i c s  of t u rb id  media, important r e s u l t s  have been obtained i n  our country 
which may explain those fundamental physical  assumptions which l i e  a t  the  b a s i s  
of our concepts of l i g h t  s c a t t e r i n g  i n  general .  This f a c t  w a s  noted i n  1940 by 
academician S. I. Vavilov. 

'I. .. t h e  problem of s c a t t e r i n g  is  one of t he  chapters  of o p t i c s  i n  which 
very important advances have been d e f i n i t e l y  made, p a r t i c u l a r l y  due t o  t h e  work of 
Soviet  phys ic i s t s . "  I would l i k e  t o  poin t  out t h a t  t he  bas i c  assumption of 
present  day sc ience  regarding molecular s c a t t e r i n g  of l i g h t  states t h a t  any 
volume f i l l e d  with a substance must scatter l i g h t  due t o  f luc tua t ions .  
assumption developed from the  pos i t i on  maintained by L. I. Mandel'shtam i n  h i s  
controversy with Planck a t  the  beginning of t h e  century.  
theory of molecular s c a t t e r i n g  of Smolukhovskiy and Eins te in  a rose  from t h i s  

- 113 
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controversy.  
t he  outstanding s t u d i e s  by L. I. Mandel'shtam, G. S. Landsberg and t h e i r  s tudents  
on t h e  problem of sca t t e r ing .  
t h e  problem and l e d  t o  the  discovery of t he  so-called Raman sca t t e r ing .  It is 
s u f f i c i e n t  t o  mention the  important s tud ie s  of deceased 0. D. Khvol'son" (from 
an address on 0c.tober 19,  1940, a t  t he  conference on v i s i b i l i t y  a t  t h e  S ta te  
Opt ica l  I n s t i t u t e  [Ref. 131).  

I would a l s o  l i k e  t o  mention t h e  long systematic  interchange of 

These s tud ie s  brought a new i n t e r p r e t a t i o n  of 

§ 2 .  Fundamental Equations and Boundary Conditions 

The Maxwell equations f o r  electric and magnetic f i e l d s  and induct ion l i e  
a t  t h e  b a s i s  of t he  inves t iga t ion :  

rot H = 4c 7 J -I- 7 x, 

I div-D = 4xp, 

div B = 0. I 
H e r e  E and H are t h e  electric and magnetic f i e l d s ,  D and B -- e l e c t r i c  

and magnetic i nduc t io - j  -- dens i ty  of the  ohmic cur ren t ,  p -- charge densi ty ,  
c -- speed of l i g h t  i n  a vacuum. 

L e t  us introduce i n  the  customary manner t h e  l i n e a r  r e l a t ionsh ips  between /14 
t he  f i e l d s  and the  induct ions,  t he  current  dens i ty ,  and t h e  electric f i e l d :  

D = E E ;  B = u H ;  j = o E .  (1 .2 )  
The macroscopic constants  s, l,.~ and cs are the  phys ica l  c h a r a c t e r i s t i c s  of matter: 
t he  d i e l e c t r i c  constant ,  magnetic permeabi l i ty ,  and e lec t roconduct iv i ty .  They 
depend e s s e n t i a l l y  on the  electromagnetic f i e l d  frequency. 
t h i s  dependence a t  a la te r  point .  

W e  s h a l l  d i scuss  

The u t i l i z a t i o n  of macroscopic equations and constants  assumes t h a t  we 
are disregarding t h e  atomic s t r u c t u r e  of matter. This f a c t  determines the  lower 
boundary of t he  p a r t i c l e  dimensions t o  which t h e  ca l cu la t ions  performed later 
on pe r t a in .  It s i g n i f i e s  t h a t  t h e  dimensions of a l l  t h e  bodies under considera- 
t i o n  must be  considerably g r e a t e r  than the  atomic dimensions. 

W e  may def ine  t h i s  boundary more prec ise ly  i n  many cases. For example, 

(l)The formulas f n  the  book are indica ted  by two numbers i n  parentheses: 
the  f i r s t  number designates  t h e  chapter  number, and the  second designates  t h e  
formula number i n  the  chapter.  

t o  compile a complete bibliography, but  have r e fe r r ed  pr imari ly  t o  t h e  most 
important s tud ie s .  
given i n  the  survey by I. A. Khvostikov (Ref. 14) .  

see: I V ,  3 .  This means see Chapter I V Y  § 3 .  

References t o  t h e  l i t e r a t u r e  are given i n  brackets .  W e  have not  attempted 

A bibliography of a r t i c l e s  on t h i s  problem before  1940 is 

References i n  the  t e x t  are sometimes given i n  t h e  following form: 
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w e  should recall t h a t  t h e  e lec t roconduct iv i ty  of m e t a l  0 is propor t iona l  t o  t h e  
mean f r e e  path of e l ec t rons  i n  it, R. 

I n  a l a r g e  fragment, t h e  mean f r e e  path is  determined by s c a t t e r i n g  by 
I n  a particle whose l i n e a r  dimensions a w i l l  be considerably thermal waves. 

less than the  quant i ty  R f o r  a l a r g e  fragment, t h e  mean f r e e  path w i l l  be 
determined by the  p a r t i c l e  dimensions. I n  t h i s  case, the  e lec t roconduct iv i ty  
w i l l  be  proport ional  t o  t h e  particle dimensions (Q % a). 
dimensions increase ,  f o r  a on the  order  of R ,  t h e  l i n e a r  behavior of Q with a 
is  d is turbed ,  and CJ changes i n t o  a constant  va lue  i n  the  case a > > R  -- t h e  
e lec t roconduct iv i ty  of a massive fragment .I 

When t h e  p a r t i c l e  

I n  con t r a s t  t o  t h e  i n i t i a l  theory of Drude-Lorentz, t he  present-day'theory 
of metals assumes t h a t  R i s  one hundred t i m e s  g r e a t e r  than the  lattice constant .  
Thus, f o r  example, R is on t h e  order  of 500 8, f o r  s i l v e r  a t  room temperatures. 
Consequently, t h i s  va lue  ind ica t e s  t h e  l i m i t  of the  particle dimensions f o r  
which w e  may employ the  macroscopic va lue  of cr i n  t he  given case. 

W e  s h a l l  assume t h a t  E,  p and cs are not  dependent on time. With respec t  
t o  t h e i r  dependence upon the  coordinates ,  w e  s h a l l  assume t h a t  they are constantl15 
wi th in  a body and change i n  a jump-like manner when changing from one body t o  - 
another.  Consequently, t h e  body sur faces  w i l l  be d iscont inui ty  sur faces  of E ,  

p, c r .  This represents  an e s s e n t i a l  l i m i t a t i o n  of t h e  theory.  Thus, a l l  scatter- 
ing c h a r a c t e r i s t i c s  which are r e l a t e d  t o  the  i n t e r n a l  o p t i c a l  inhomogeniety of 
particles are omitted from our inves t iga t ion .  
studying s c a t t e r i n g  by condensation nuc le i  covered with a w a t e r  envelope, by 
h a i l  s tones ,  and a l s o  by snow and ice granules having a composite s t ruc tu re .  
The demand f o r  mathematical s impl i c i ty ,  on t h e  one hand, and t h e  l imi ted  present- 
day knowledge of p a r t i c l e  i n t e r n a l  s t r u c t u r e ,  on the  o ther  hand, compel us t o  
conform with t h i s  l imi t a t ion .  

They may be of importance when 

I n  every problem which w e  s h a l l  d i scuss  below, w e  s h a l l  assume t h a t  t h e  
following t h r e e  c h a r a c t e r i s t i c s  hold: 

(a) 

(b) 

(c) 

There are no f r e e  charges i n  any of t h e  bodies under considerat ion;  

The magnetic permeabi l i t i es  equal un i ty  (p = 1); 

The electric and magnetic f i e l d s  are purely per iodic  funct ions of 
t i m e ,  i .e.,  t h e i r  dependence on t i m e  is determined by t h e  f a c t o r  (where 
w is t h e  f i e l d  frequency). 

These assumptions enable us t o  avoid unnecessar i ly  cumbersome formulas 
which would l i m i t  t h e i r  gene ra l i t y  i n  p rac t i ce  ( fo r  t he  group of problems i n  
which we are i n t e r e s t e d ) .  

("Our discussion on t h e  dependence of cr upon t h e  dimensions is s i m i l a r  

For p a r t i c l e s  whose dimensions are considerably less than R ,  
t o  t he  discussion performed during an ana lys i s  of t r anspor t  phenomena i n  u l t r a -  
r a r e f i e d  gases.  
an e l ec t ron  gas i s  u l t r a r a r e f i e d  . 
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Actua l ly , the  f a c t  t h a t  p a r t i c l e s  i n  t h e  atmosphere o r  i n  co l lo id  so lu t ions  
are usua l ly  charged simply ind ica t e s  t h a t  t h e  par t ic le  w i l l  a l s o  have a constant  
electric f i e l d ,  along with a d i f f r a c t e d  f i e l d .  This constant electric f i e l d  
w i l l  be  combined with the d i f f r a c t e d  f i e l d .  It w i l l  have no inf luence  upon t h e  
d i f f r a c t e d  f i e l d  (i.e., upon s c a t t e r e d  l i g h t ) ,  and the re fo re  i t  cannot be taken 
i n t o  account. 
same manner. 

Charged and uncharged p a r t i c l e s  scatter l i g h t  i n  absolu te ly  t h e  

With respect  t o  the  magnetic permeabili ty v ,  experience has shown t h a t  
i n  t h e  v i s i b l e  and in f r a red  f o r  a l l  substances i t  p r a c t i c a l l y  equals 

regions.  This pe r t a ins  not  only t o  d i e l e c t r i c s ,  bu t  a l s o  t o  ferromagnetic 
substances ( i ron ,  n i cke l ,  etc.) f o r  which v assumes enormous values  i n  the  s ta t ic  
case. 

uni ty  

One reason f o r  t h i s  i s  magnetization i n e r t i a ,  making it impossible t o  
trace the  rap id  f i e l d  o s c i l l a t i o n s  i n  a l i g h t  wave. 

The t r a n s i t i o n  t o  s t a t i c  values  of 1-1 occurs i n  the  region of u l t r a - shor t  /16 
This t r a n s i t i o n  w a s  s tud ied  experimentally by V. K. Arkad’yev (Ref. 15)- waves. 

i n  1913. Observing r e f l e c t i o n  and absorpt ion of waves i n  w i r e s  he found, f o r  
example, t h a t  1-1 changes smoothly from ~ . l  = 80 i n  the  case X = 72.7 cm t o  1-1 = 4.5 
i n  t he  case X = 1 . 3 1  cm f o r  i ron .  

With respect  t o  the  lat ter assumption (point  c ) ,  t h i s  means t h a t  w e  are 
deal ing with s c a t t e r i n g  of monochromatic l i g h t .  
i nves t iga t ing  s c a t t e r i n g  of a composite bundle, the  l a t t e r  may be regarded as 
a superposi t ion of monochromatic bundles. Therefore,  the  l a t te r  l i m i t a t i o n  is  
a l s o  unimportant. 

I n  those cases when w e  are 

When t h e  t h r e e  f a c t o r s  (a ,  b y  c) ind ica ted  above are taken i n t o  considera- 
t i o n  along with r e l a t ionsh ips  (1.2) , t he  system of equations (1.1) f o r  i n t e r n a l  
regions (outs ide  of t h e  d iscont inui ty  su r face  of E and a) may be r ewr i t t en  as 
follows 

c C 

iw 
rot E= - - H; C (1.3-k) 

div E = 0; dlv H = 0. 
It may be r ead i ly  seen t h a t  t he  two l a s t  equations are t h e  r e s u l t  of t h e  

two f i r s t  equations i n  the  system which w e  obtained. 
omitted from f u t u r e  discussion.  Omitting H and E, respec t ive ly ,  from equations 
(1 .3 )  and (1.3*),  w e  obta in  

Therefore, they w i l l  be 

(1 4 )  A E f k2 E = 0; A H f kP H = 0. 

Here A is  the  Laplace opera tor ,  and 

(1.5) kt = - i4xm3 
CS 

Thus, t h e  f i e l d s  E and H must s a t i s f y  the  o s c i l l a t o r y  equations with a 
complex wave number. I f  ko is t h e  wave number f o r  a vacuum (ko = g), w e  then 

C 

9 



have 
k = = = k G ;  in= If---? e-[-. 

Here m is t h e  complex r e f r a c t i v e  index. 

I n  addi t ion  t o  the  equations (1.4) , t he  f i e l d s  E and H must s a t i s f y  
On the  d iscont inui ty  sur faces  they may be reduced 

- /17 
c e r t a i n  boundary condi t ions.  
t o  t he  requirement t h a t  the  Maxwell equations be s a t i s f i e d  within the  regions 
encompassing sec t ions  of these  sur faces .  It i s  w e l l  known t h a t  t h i s  i s  equiv- 
a l e n t  t o  the  reqirement t h a t  t h e  t angen t i a l  components of t he  e l e c t r i c  and 
magnetic f i e l d s  be continuous. Thus, s ince  each of t h e  f i e l d  vec tors  i s  broken 
down i n  the  tangent plane i n t o  two independent (mutually perpendicular) compon- 
en t s ,  t he  boundary condi t ions on the  dividing sur face  lead t o  four  s c a l a r  equa- 
t ions .  
of t he  o s c i l l a t o r y  equation must a l s o  s a t i s f y  condi t ions a t  i n f i n i t y .  They may 
be formulated i n  t h e  so-called r ad ia t ion  pr inc ip le .  

In  addi t ion  t o  the  condi t ions on the  d iscont inui ty  sur face ,  t h e  so lu t ion  

The essence of t h i s  is as follows. 

I n  order t o  obta in  an unequivocal so lu t ion ,  it is  necessary t h a t  t h e  
d i f f r a c t e d  sec t ion  of t he  f i e l d  represent  a wave which diverges from t h e  d i f f r ac -  
t i o n  source,  along with t h e  n a t u r a l  requirement t h a t  the  d i f f r a c t e d  (perturbed) 
sec t ion  of the  f i e l d  decrease rap id ly  a t  i n f i n i t y .  
t h a t ,  i n  formal terms, converging waves t r ave l ing  from i n f i n i t y  t o  the  d i f f r a c t i o n  
source s a t i s f y  the  o s c i l l a t o r y  equation, along with diverging waves. 
t i o n  p r inc ip l e  n a t u r a l l y  requi res  t h a t  waves of t h e  lat ter type be omitted. 
electrodynamics t h i s  f a c t  corresponds t o  r e j e c t i o n  of t he  advanced po ten t i a l s  
[ see  (Ref. 161, page 1531 

The f a c t  of t he  matter i s  

The radia- 
I n  

L e t  us  now tu rn  t o  the  formula f o r  l i g h t  i n t e n s i t y .  We should r e c a l l  
t h a t  t he  magnitude (averaged over time) of t h e  r ad ia t ion  energy f l u x  vec tor  is 
ca l l ed  l i g h t  i n t ens i ty .  
t he  d i r ec t ion  of propagation. 

This v i c t o r  may be computed per  u n i t  area, normal t o  /18 
W e  s h a l l  ca l l  i t  t h e  Umov-Poynting vector .  2 

( l ) V .  D. Kupradze (Ref. 1 7 )  has provided str ict  proof f o r  t h e  r ad ia t ion  
p r inc ip l e .  

system of Maxwell equations d e f i n i t i v e l y  i n  an i n f i n i t e  region should no t  be 
regarded as a drawback of t h i s  system. 
have imposed a s t a t iona ry  so lu t ion ,  which is  pe r iod ic  i n  t i m e ,  upon the  system. 
This means t h a t  t h e  s t a t iona ry  so lu t ion  of t h e  wave equat ion,  which is  pe r iod ic  
i n  t i m e ,  is not equivalent  t o  the  so lu t ion  of t h i s  equation with co r rec t ly  for-  
mulated i n i t i a l  condi t ions.  S t r i c t l y  speaking, only the  l a t t e r  method of 
so lu t ion  is  co r rec t .  Thus, no "parasi te"  waves, t r ave l ing  from i n f i n i t y  t o  the  
source,  are produced, and t h e r e  i s  no necess i ty  of omitt ing them, i .e.,  i n  the  
r ad ia t ion  pr inc ip le .  

(2)The concept of t h e  motion of energy w a s  f i r s t  introduced i n t o  science 
by N. A. Umov, as appl ied t o  propagation of elastic deformation energy. Ten 
years  la ter ,  Poynting formulated a theorem regarding the  f l u x  of (continued) 

The necess i ty  of der iving a r ad ia t ion  p r i n c i p l e  i n  order  t o  so lve  t h e  

This i s  r e l a t e d  t o  the  f a c t  t h a t  w e  
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Since our  f i e l d s  
may be  determined by t h  
911 : 

C n=- 8 .  Re [E, H+]* 

Our f i n a l  problem is  t o  c a l c u l a t e  t h e  vec tor  II by means of E and 11 and 
c e r i a i n  i n t e g r a l s  containing By s i n c e  observations and measurements 
reduced t o  measuring i n t e n s i t y .  
i n  o the r  wave phenomena -- f o r  example, i n  wave mechanics. 
formulated i n  mathematical terms f o r  l i n e a r  q u a n t i t i e s  ( f i e l d s ,  $-functions),  
while t h e  squares  of the  q u a n t i t i e s  are those which are customarily measured. 

W e  should note  t h a t  a s i m i l a r  
Th 

§ 3. Linear Charac t e r i s t i c s  

The general  fornula t ion  of the  problem i n  the  theory of l i g h t  s c a t t e r i n g  
i n  a tu rb id  body does not  d i f f e r  from the  formulation of d i f f r a c t i o n  problems 
i n  electrodynamics. This formulation i s  as follows. For a c e r t a i n  outer  
"i l lumination" -- o r ,  more prec ise ly ,  f o r  a c e r t a i n  value of the  unperturbed 
electromagnetic f i e l d  (o r  t he  frequency d i s t r i b u t i o n  of q u a n t i t i e s  charac te r iz ing  
t h e  f i e l d ,  i n  t h e  case of non-monochromatic r ad ia t ion )  -- and f o r  a c e r t a i n  
s p a t i a l  d i s t r i b u t i o n  of electromagnetic proper t ies  of t h e  tu rb id  body, t h e  f i e l d  
must be  determined a t  a c e r t a i n  poin t  ou ts ide  o f ,  o r  wi th in ,  t h e  body (or  t h e  
frequency d i s t r i b u t i o n  of f i e l d  elements) .1 

This problem may be broken down i n t o  two p a r t s .  F i r s t ,  w e  may formulate 
the  problem of determining t h e  electric f i e l d  s c a t t e r e d  by an ind iv idua l  ele- 
ment of t h e  tu rb id  body, assuming t h a t  t h e  outer  f i e l d  i n  which t h e  " turbid 
element" is loca ted  is  known. This ou te r  f i e l d  represents  a superposi t ion of 
t h e  f i e l d  i r r a d i a t i n g  the  body, and t h e  f i e l d  produced (where t h e  " turbid ele- 
ment" i s  located)  by a l l  remaining elements of t h e  body under considerat ion.  
Second, t h e  inf luence  of a l l  elements ( p a r t i c l e s )  of t h e  body must be summed. 

/19 

Since t h e  f i e l d  ac t ing  upon a given "par t ic le"  i s  determined by a l l  t h e  
p a r t i c l e s "  ( including i t s e l f ) ,  t he  d iv i s ion  of t h e  problem i n t o  two sec t ions  11 

is not  v a l i d ,  genera l ly  speaking, and w e  have a s i n g l e  problem. However, i n  
a c t u a l i t y  i n  t h e  major i ty  of real t u r b i d  media t h i s  d iv i s ion  i s  reasonable,  and 
e s s e n t i a l l y  d i f f e r e n t  methods may be appl ied f o r  analyzing both p a r t s  of t h e  
general  problem. 
particle" and t h e  s t r u c t u r e  of t h e  t u r b i d  macrovolume are e n t i r e l y  d i f f e r e n t ,  
with respec t  t o  the  n a t u r a l  scale of t h e  length included i n  our  problem -- t he  
wave length  of i nc iden t  r ad ia t ion  A.  

This i s  determined by the  f a c t  t h a t  t h e  s t r u c t u r e  of t h e  " turbid 

The d is tance  between molecules comprising 

but ion of electric p rope r t i e s  wi th in  t h e  body. 
11 



mutual arrangement changes i n  a period of time which is  comparable with t h e  
observa t iona l  t i m e ,  t h e  tu rb id  macrovolume may be  regarded as a co l l ec t ion  of 
incoherent emitters, and t h e i r  i n t e n s i t i e s  may be  combined, bu t  no t  t he  
f i e l d s .  
f a c t  t h a t  t h e i r  mutual arrangement does not  change. I n  the  f i r s t  c a s e , ( t h e  
problem of t h e  macrovolume), t he  problem may be formulated i n  t h e  form of a 
c e r t a i n  i n t e g r o d i f f e r e n t i a l  equation f o r  mul t ip le  s ca t t e r ing .  
case ( the  problem of the  p a r t i c l e )  t h e  problem may be  reduced t o  a wave equation 
with boundary and i n i t i a l  condi t ions,  o r  t o  an i n t e g r o d i f f e r e n t i a l  equation 
which is equivalent  t o  it. I n  t h e  general  case, along with t h e  wave length A ,  
t h e  following q u a n t i t i e s  having t h e  dimensionality of length  are included i n  
our problem: d -- d i s t ance  between elements wi th in  the  p a r t i c l e ;  a -- particle 
dimensions; R -- mean d is tance  between p a r t i c l e  centers  i n  a tu rb id  medium; 
R -- dimensions of t h e  tu rb id  volume. 

As regards t h e  "par t ic le" ,  t h e  f i e l d s  must be  combined i n  view of t h e  

I n  t h e  second 

Thus, w e  have t h e  following four dimensionless parameters f o r  t h e  charac- /20 
teristics of t h e  problem: 

d 
x1 - A 

- -  charac te r izes  the  p a r t i c l e  s t r u c t u r e ;  

a 
x2 = 5; 

R 
x3 = 

R 
x4 = 7 
I n  addi t ion  t o  t h e  apparent i n e q u a l i t i e s  

charac te r izes  the  p a r t i c l e  s c a t t e r i n g  p rope r t i e s ;  

charac te r izes  the  medium s t r u c t u r e ;  

charac te r izes  t h e  s c a t t e r i n g  proper t ies  of t he  volume as whole. 

x, <xg < x, < x,. 
t he  following r e l a t ionsh ips  a l s o  customarily hold: 

xl a 1; %, B 1. 

(1.8) 

With respect  t o  x2 and x 

2 3 

These cases are as follows: 

they can assume any values  coinciding with t h e  

The l imi t ing  cases may be s tudied  most simply of a l l  
3' 

general  i nequa l i ty  (1.8). 
when x and x are e i t h e r  very l a rge ,  o r  are very s m a l l .  

9 x s w  1; xn< 1, 

4 xa<l; %s<l.  
b) x,B 1; 1, 

The f i r s t  two cases are usua l ly  invest igated.  With respect  t o  case (c), 
it i s  usua l ly  omitted,  alftrough 
o p t i c s  of t u rb id  media.l 
independent s ec t ions ,  which w a s  ind ica ted  above, w i l l  not  be va l id :  an ana lys i s  
of t h e  elementary s c a t t e r i n g ,  and allowance f o r  mul t ip l e  s ca t t e r ing .  

it is important f o r  several problems of t h e  
I n  t h i s  case, the  d iv i s ion  of t h e  problem i n t o  two 

(')In t h e  case of l i g h t  s c a t t e r i n g  by particles which themselves are 
aggregates of extremely s m a l l  p a r t i c l e s .  
w e r e  s tud ied  by L. M. Moroz, and Ya .  I. Frenkel'  (Ref. 20). 

For example, emulsions of t h i s  type 

12 



e 

I n  a c t u a l i t y ,  i n  t he  cases (a 
is considerably g r e a t e r  than t h e  wave  length.  
be  regarded as incoherent emitters. The random d i  
(which f requent ly  changes during a per iod of t 
observat ion t i m e )  l eads  t o  such a sharp change i n  t h e  phase of t h e  f i e l d s  

ind iv idua l  p a r t i c l e s  that in t e r f e rence  phenomena are not  observed. 
(This is  approximately t h e  same reason why it  is  impossible t o  observe in t e r -  
ference phenomena i n  t h i c k  p l a t e s ) .  
described by l i g h t  technology metho The customary equation of i p l e  
s c a t t e r i n g  i n  a tu rb id  medium belon t o  t h i s  region. A d i f f e r e n  ua t ion  
occurs,  i f  the d is tances  between t h e  p a r t i c l e s  are comparable to ,  o r  g rea t e r  than, 
t he  wave length.  
ticles plays an important r o l e  here .  I n  physical  terms, t h i s  means t h a t  w e  
must combine t h e  f i e l d s ,  and not  t h e  r ad ia t ion  i n t e n s i t y ,  with allowance f o r  t h e  
corresponding phases. 
can be computed i f  t h e i r  phases are opposed. For example, i t  is  apparent t h a t  
i f  t h e  d i s t ance  between t h e  p a r t i c l e s  is  considerably less than A ,  w e  must dea l  
with t h e  problem of wave r e f l e c t i o n  from a s o l i d  body. 

I n  t h i s  case, t h e  l i g h t  f i e l d  may be  

In t e r f e rence  of l i g h t  which is s c a t t e r e d  by ind iv idua l  par- 

The i n t e n s i t i e s  are always combined, whereas the  f i e l d s  

This i n t e r e s t i n g  and important problem w i l l  be  discussed i n  V I I I ,  5 i n  
g r e a t e r  d e t a i l .  
s c a t t e r i n g  [cases (a) and (b ) ] .  

I n  a l l  the  remaining sec t ions ,  we  s h a l l  only d iscuss  elementary 

W e  should a l s o  poin t  out  that w e  can d iv ide  t h e  general  problem i n t o  two 

The i n t e r a c t i o n  of p a r t i c l e s  upon each o t h e r  occurs he re  (see V I I I ,  5). 
independent s ec t ions  i f  a Q, R [and the  general  i nequa l i ty  (1.8) lo ses  any mean- 
ing] .  

The parameters x are the  main l i n e a r  c h a r a c t e r i s t i c s  of t h e  problem. i 
Their magnitudes and t h e  r e l a t ionsh ips  between them determine t h e  na tu re  of any 
s p e c i f i c  problem. For example, i n  t h e  case x >> 1 when, consequently, w e  may 

employ t h e  equation of mul t ip le  s c a t t e r i n g ,  t he  following parameter is  of 
s ign i f icance  : 

3 

aaR 4x4 
.5--=-. 4 13 

This quan t i ty  is c a l l e d  the o p t i c a l  thickness  of a t u r b i d  medium, and charac- 
t e r i z e s  t h e  degree of mul t ip le  s ca t t e r ing .  

% 
The condi t ion 1: < 1 i n d i c a t e s  t h a t  we  may d is regard  mul t ip l e  s ca t t e r ing .  

This condi t ion does n o t  follow from a l l  t h e  preceding l i m i t a t i o n s  of t he  problem. 

book is t o  study t ranslucen /22 
media, we  s h a l l  a l s o  assume t h a t  t h i s  condi t ion holds.  

t h e  l i n e a r  c h a r a c t e r i s t i c s  of t h e  
xi. For example, t h e  q u a n t i t i e s  

t h e  macrovolume, etc. can hold h e  
t h e  parameters xi are of dec i s ive  importance f o r  s tudying t h e  e n t i r e  problem. 

13 



L e t  us  i n v e s t i g a t e  what values  the parameters x and x assume f o r  d i f f -  2 3 
e ren t  problems i n  t h e  atmosphere. 

I n  a so-called pure atmosphere, admixtures are of t he  main importance, 
This pe r t a ins  t o  p a r t i c l e s  having a rad ius  

Pr imari ly  

p a r t i c u l a r l y  i n  t h e i r  lower 1aye r s . l  
of approximately 0.11-1: drops of water o r  so lu t ions  of ac ids ,  salts, and bases ,  
and a l s o  c r y s t a l s  of ice and dus t  having a mineral  o r  organic  o r ig in .  
N a C 1 ,  HC1, MgC12, MgS04, CaS04, etc. are encountered. 

drops and p a r t i c l e s  form the  so-called atmospheric m i s t .  

These extremely s m a l l  

The thermodynamic s t a b i l i t y  of such s m a l l  drops i s  caused by t h e  high 
concentrat ions of substances dissolved i n  them. Drops with intermediate  
dimensions (between drops of m i s t  and cloud drops) are unstable .  These drops 
e x i s t  f o r  a very sho r t  per iod of t i m e  i n  t h e  i n i t i a l  s t ages  of cloud formation. 

The number of particles f luc tua te s  from seve ra l  hundreds pe r  cubic cent i -  
meter i n  pure mountain a i r  up t o  hundreds of thousands i n  t h e  ci t ies.  
d iu rna l  and year ly  p a t t e r n  of t h i s  number provides t h e  pe r iod ic i ty  of t he  t rans-  
mit tance and o ther  o p t i c a l  phenomena caused by the  admixtures. 

The 

I n  meteorology, w e  are pr imari ly  dealing with two r ad ia t ion  f luxes  -- 
For 

s o l a r  r ad ia t ion  with a energy maximum i n  the  case of A = 0.511, and terrestrial 
r ad ia t ion  and gases of t h e  a i r ,  with a maximum i n  t h e  case of A = 101-1.. 
admixtures, t h e  quant i ty  x 2 1 and x >> 1. The l a r g e  value of x ind ica t e s  2 3 3 
t h a t  w e  may apply t h e  customary summation r u l e s  f o r  i n t e n s i t i e s .  
hand, f o r  t h e  case A = 101.1 i n  very dusty a i r  x3 i s  about 5-10. Allowance f o r  

i n t e r f e rence  between s c a t t e r i n g  centers  may be of importance. 

On the  o ther  
/23 

Since x does not exceed uni ty ,  an ana lys i s  of elementary s c a t t e r i n g  does 2 
not e n t a i l  any d i f f i c u l t i e s ,  i f  i t  is  assumed t h a t  t he  p a r t i c l e s  are spher ica l .  
However, i t  is  s i g n i f i c a n t  t h a t  c r y s t a l s  of ice and o the r  dust  p a r t i c l e s  
preferab ly  take  the  form of d i sc s  o r  rods. W e  s h a l l  i nves t iga t e  t h e  s c a t t e r i n g  
of l i g h t  by such p a r t i c l e s  i n  V I I I ,  4. 

L e t  u s  now discuss  t h e  s i t u a t i o n  during t h e  propagation of l i g h t  i n  
clouds, r a i n ,  and fogs. 

(a). Clouds. Studies  of cloud elements have been performed by many 
authors  [see, f o r  example, t he  s t u d i e s  of Ye. S. Selezneva (Ref. 21),  A. M. 
Borovikov (Ref. 22), etc.]. A. M. Borovikov g ives  a curve, which we have shown 
i n  Figure 1, f o r  t h e  d i s t r i b u t i o n  by s i z e  of cloud drops. This is t h e  r e s u l t  

- 
( l )This  may be  r ead i ly  es tab l i shed  i f  w e  compare t h e  v i s u a l  range of 

v i s i b i l i t y  i n  a Rayleigh atmosphere with t h e  real range. 
and p = 760 mm Hg, t h e  Rayleigh range is about 350 km, while the  real range 
is considerably less (% 20 km). 

In  t h e  case t = O°C 
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of averaging observ S types of 

r i n  1.1 

Figure 1. Curve Showing t h e  Di s t r ibu t ion  
of Drops by Size  i n  Clouds 

The frequency i n  percents  is p lo t t ed  along t h e  o rd ina te  axis, and t h e  rad ius  
of drops i n  microns is p l o t t e d  along the  absc issa  ax is .  It may be  seen i n  
Figure 1 t h a t  the  cloud cons i s t s  mainly of drops having a rad ius  of 5 - 7 ~ .  
proport ion of these drops amounts t o  50% of the  e n t i r e  number of drops. 
with r = 51.1 d isp lay  the  g r e a t e s t  frequency. 

The 
Drops 

The average s i z e  of t h e  drops 
- ; = (  zniri) is somewhat g rea t e r :  r = 8.311. Along with t h e  f i r s t  max imum c lose  

Cni 

t o  5-101.1, i n  c e r t a i n  cases (qu i t e  r a re ly )  t he re  is a second maximum at  15-2511 
[according t o  Selzneva (Ref. 21) , Figure 21. 

Table 1 presents  more d e t a i l e d  da t a  on t h e  d i s t r i b u t i o n  of drops i n  /24 
clouds. 

Form 
of 
Clouds 

S t  
Ac 
sc 
N3 

TABLE 1 

The mean rad ius  of t he  drops : in  a cloud increases  with a l t i t u d e .  W e  have 
llowing explanation f o r  t h i s  important f a c t .  

u re  with a l t i t u d e  l eads  t o  a decrease i n  t h e  
Since t h e  

ter must i n  
ps  wil l  increase  crease with a l t i t u d e .  This means t h a t  t h e  dimensions of t 
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with a l t i t u d e  ( t h e i r  number per  u n i t  of mass w i l l  no t  change). 

Water Content 
i n  g/m3 

The water content i n  t h e  cloud 
increases  from its periphery t o  t h e  
center .  The g r e a t e s t  w a t e r  content is 
found i n  t h e  center ,  c lo se  t o  t h e  upper 

i n  the  clouds change from 0.01 g/m3 t o  
several g/m3 ( i n  Cumulanimbus). 
average 

it i s  about 1 g/m3 f o r  d i f f e r e n t  forms. 
The mean d is tances  between p a r t i c l e s  
are shown i n  Table 1 f o r  a water content  

h 
0 9 30 

3 edge. The absolu te  water content  values  8 za 
Fr 

rrl On t h e  
t h e  water content is  not  above /25 e 0.2 g/m 3 f o r  t h e  usual  clouds,  whereas 0 

Figure 2. "Two-Humped" Di s t r ibu t ion  
Curve of 1 g/m3. 

Rain In- 
t e n s i t y  
i n  mm/hr 

I. A. Khvostikov (Ref. 23) has s tudied t h e  t ransmit tance of fogs and 
clouds,  as w e l l  as t h e  degree of s ca t t e r ed  l i g h t  po la r i za t ion .  
him t o  the  important conclusion . tha t  a l a rge  group of "submicroscopic" particles , 
with a rad ius  of about 0.11.1, e x i s t s  i n  clouds, along with the  drops ind ica ted  
above (s 5 - 1 0 ~ )  .I Thus, although the  number of t hese  p a r t i c l e s  is l a rge ,  t he  
water content which they introduce i n t o  the  cloud is on the  order  of severa l  
percents .  
provided f o r  t h i s  important problem (see V I I I ,  1). 

This study led 

Unfortunately,  as of t h e  present  no f i n a l  c l a r i f i c a t i o n  has been 

Fog 
Thick Fog 
Fine Rain 
Light Rain 
Moderate Rain 
Strong Rain 
Very Strong Rain 
Showers 

(b) Fogs and Rain. 

- 

Table 2 presents  c e r t a i n  da t a  regarding fogs and r a in .  The d a t a  on ra in  
i n t e n s i t y  presented i n  t h e  l a s t  column represent  a q u a n t i t a t i v e  determination 
of d i f f e r e n t  types of r a in .  
i n  t h e  l i q u i d  phase. 

The da ta  on water content  i nd ica t e  t h e  water content 

TABLE 2 

Type of Formation Drop Diameter 

0.01 
0.10 
0.20 
0.45 
1.00 
1.50 
2.10 
3-5 

Mean Distance 
Between Drops 
i n  mm 

4.3 
21 
36 
70 

123 
130 
138 
137 

6 10-3 
57 . 10-3 
93 . 10-3 

0.14 
0.28 
0.83 
1.8 
5.4 

Traces 
0.05 
0.25 
1.00 
4.00 

15 .OO 
40.00 

100 .o 

"'The customary methods of determining drops i n  clouds do not record 
such s m a l l  p a r t i c l e s .  
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I n  addi t ion  t o  t h e  hydrometeors, t h e  atmosphere a l s o  includes snow, snow 
g ra ins ,  snow and ice p e l l e t s  and h a i l .  The theory developed f o r  r a i n  may be 
appl ied t o  these  cases, i f  i t  i s  approximately assumed t h a t  t hese  p a r t i c l e s  are /26 
spheres with a c e r t a i n  e f f e c t i v e  rad ius  and with e f f e c t i v e  electric proper t ies .  
This approximation is  r a t h e r  rough, and may only be  appl ied f o r  q u a l i t a t i v e  
discussions.  

Assuming t h a t  drops i n  the  clouds have a rad ius  of about 5 1-1, w e  f i n d  t h a t  
x2 w i l l  be about 10 i n  the  v i s i b l e  region. 

i s  la rge .  

even l a r g e r  values  i n  t h e  case o f  fog and r a in .  

It may be assumed t h a t  t h i s  value 

The quant i ty  x3(% lo3) is a l s o  l a rge  here .  Both parameters have 

Consequently, the  bas i c  problem which now confronts  us is t o  study scatter- 
ing by an enormous t ransparent  drop. 
at  a l a te r  point .  

W e  w i l l  d i scuss  t h i s  problem i n  d e t a i l  

Table 3 shows t h e  v a l u e s . f o r  t h e  parameters x2  and x i n  the  in f r a red  3 
region. 

TABLE 3 

I I 

Clouds .............. 
Fogs ................ 
Rain ................ 3600 
Thick Fogs .......... 2100 

I I I I 

W e  thus have two d i f f e r e n t  problems: t h e  f i r s t  problem i s  f o r  t h e  case of 
clouds and f i n e  fogs; t h e  second is  f o r  t h e  case of t h i c k  fogs and ra in .  
the  f i r s t  case, w e  may assume t h a t  t he  p a r t i c l e s  are comparable with the  wave 
lengths;  i n  t h e  second case, w e  may assume t h a t  they are l a rge r .  I n  both cases, 
it is  not  poss ib le  t o  take  i n t o  account i n t e r f e rence  between p a r t i c l e s  (x3 >>1). 

I n  

W e  may see t h a t  t he  geophysical problems r equ i r e  an inves t iga t ion  of any 
values  f o r  t he  r a t i o  a/A. 
physics and astrophysics .  
importance, along with d i e l e c t r i c ,  t ransparent  o r  absorbing p a r t i c l e s .  There- 
fo re ,  w e  s h a l l  make a general  ana lys i s  of t h e  problem later, confining ourselves  
n e i t h e r  t o  p a r t i c l e  dimensions nor  t o  t h e  na tu re  of t he  p a r t i c l e s .  
always assume (except f o r  V I I I ,  4 )  t h a t  t h e  p a r t i c l e s  are spheres.  

The s i t u a t i o n  is t h e  same i n  problems of co l lo id  
Metallic and semiconductor p a r t i c l e s  a l s o  are of 

W e  s h a l l  

0 4 .  Opt ica l  Constants - /27 

The physical  p rope r t i e s  of s c a t t e r i n g  p a r t i c l e s  are of s i g n i f i c a n t  import- 
ance i n  t h e  problem under considerat lon,  along with t h e  l i n e a r  c h a r a c t e r i s t i c s  
which w e r e  summarized above. I n  accordance with (1.6), a l l  of t h e  o p t i c a l  
p roper t ies  of matter i n  which w e  are in t e re s t ed  may be  described by one complex 
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number m -- t h e  complex r e f r a c t i v e  index. 

I n  seve ra l  cases, i t  i s  advantageous t o  draw a d i s t i n c t i o n  between the  
real and imaginary p a r t  i n  t he  complex r e f r a c t i v e  index m. 
m i s  usua l ly  w r i t t e n  i n  one of the  two following forms: 

For t h i s  purpose, 

o r  I m = n(1  - ix )  
!n==n- ix .  

H e r e  n is the  r e f r a c t i v e  index; -- absorption index; x -- absorption coef f i -  
c i en t  : 

X = nx. (1.10) 

The d i e l e c t r i c  constant  E i n  t h e  general  case is  a l s o  a complex quant i ty .  
It may be wr i t t en  as follows: 

e = e'- ie", 
where E '  and E'' are the  real and imaginary p a r t s ,  respec t ive ly  of E .  

Thus, f o r  m2 w e  have: 
m 2 X e f - i  e $4"" 

( I r  J 
and 

I 8' = n' (1 --x3 = n* - x', 

e" + % = 2n2x = 2nx. 

W e  should r e c a l l  t he  physical  meaning of the  q u a n t i t i e s  n and X.  

(1.11) 

(1.12) 

Equations f o r  t he  f i e l d s  (1.4) may be s a t i s f i e d  by a so lu t ion  of the  
following type 

ef(at--ky) e ~ ( ~ t - b ~ ) .  

An i n f i n i t e  plane wave, having the  frequency w and ( i n  a vacuum) the  
wave vec to r  k , propagated along the  axis P, corresponds t o  t h i s  so lu t ion .  0 

Replacing m by n and x, w e  obtain:  

Thus, we ob ta in  a plane wave having the  length  A '  = - 2n . The wave 

i n  the  case of 

, r (d -kpny)  . e--ko'V, 

- I 2 8  
kOn 

amplitude decreases by the  quant i ty  e-a'y, where a' = - x2?r 

displacement by y of u n i t  of length.  With respect  t o  the  l i g h t  i n t e n s i t y  which 
is determined by means of t he  square of the  f i e l d s ,  i t  a l s o  decreases according 
t o  the  l a w  c - ~ Y ,  but  t w i c e  as rap id ly  (a = 2 a ' ) .  

x 

A plane wave undergoes s i g n i f i c a n t  changes when penetrat ing an absorbing 
body: t he  wave becomes heterogeneous. 
do not coincide with planes of constant amp1itude.l 

(The XOZ-plane) . 
18 

This means t h a t  planes of constant phase 
I n  addi t ion ,  i n  i t s  

(1) I n  con t r a s t  t o  t h e  case indica ted  above, where both planes coincide 



customary form t h e  r e f r a c t i o n  l a w  does not  hold. The r a t i o  between t h e  s i n e  of 
t h e  angle of t h i s  incidence and t h e  Sine of t h e  angle  formed by t h e  wave normal 
and the  perpendicular t o  t h e  dividing su r face  a t  t h e  poin t  of incidence depends 
on t h e  angle of incidence.  
depends on t h e  angle  of incidence. 

Thus, t h e  rate a t  which t h e  wave is  propagated 

0,420 
0,450 
0,500 
0,525 

For example, cases are poss ib le  i n  which, along with a zero angle of 
incidence,  t h e r e  i s  one angle a t  which l i g h t  which penet ra tes  t h e  dividing 
boundary does not  undergo r e f r ac t ion .  
i n  t h e  v i s i b l e  region. 

Thus, f o r  gold t h i s  angle i s  about 76" 

-- 

1 J O -  i 1,70 0,550 ' 0,57-l2,45 
1,73- i 1.72 0.38 - i 2,96 
1,1Q - i i2 ,02 , ::E: 1 0.4 1 - i 3 , s  
0.79 - i 2,23 

W e  s h a l l  assume t h a t  t h e  q u a n t i t i e s  n and x are given from t h i s  point  on. 
They e s s e n t i a l l y  depend on t h e  frequency, and t h e i r  values  must be found experi- 
mentally from experiments with rad ia t ion  of d i f f e r e n t  wave lengths .  These 
experiments usua l ly  cons i s t  of determining x ( d i r e c t l y ,  based on l i g h t  a t tenu-  
a t ion  a f t e r  it has penetrated a f i l m  having a d e f i n i t e  thickness) and of t h e  
simultaneous determination of n (depending on the  r e f l e c t i o n  c o e f f i c i e n t ) .  Very 
frequent ly ,  p a r t i c u l a r l y  when determining t h e  o p t i c a l  constants  of metals, only 
t h e  polar iza t ion  r a t i o s  are s tudied  i n  r e f l e c t e d  light' .  

These measurements were performed f o r  a l a r g e  class of d i f f e r e n t  sub- /2q 
s t ances ,  and t h e i r  r e s u l t s  may be found i n ,  f o r  example, (Ref. 2 4 )  o r  i n  o the r  
handbooks. W e  cannot discuss  t h e  da t a  per ta in ing  t o  d i f f e r e n t  s p e c i f i c  sub- 
s tances  here .  

W e  s h a l l  only dwell somewhat i n  d e t a i l  on o p t i c a l  constants  of metals 
and l i q u i d  w a t e r ,  s i n c e  t h e  former is of importance i n  co l lo id  o p t i c s ,  and t h e  
latter i s  of importance i n  geophysics. 

The o p t i c a l  constants  have a pronounced, and i n  general  odd, behavior i n  
t h e  u l t r a v i o l e t ,  o p t i c a l ,  and c lose  i n f r a r e d  regions which encompass t h e  absorp- 
t i o n  bands of e lec t rons  i n  a metal. For a l l  metals i n  t h i s  region, n and x are 
approximately of t h e  same order  and have values  of about 0.5 - 3. 

I n  Table 4 w e  present ,  f o r  example, t h e  o p t i c a l  da t a  f o r  gold,  which w e r e  
employed i n  t h e  ca lcu la t ions  of  M i e .  These da t a  were obtained experimentally. 

TABLE 4 

(')It should be  noted t h a t  the determination of n and x f o r  metals i s  a 
r a t h e r  complex experimental problem. Polar iza t ion  experiments are complicated 
by f a c t o r s  introduced by t h e  m e t a l  sur face  l a y e r s ,  thus confusing t h e  p i c tu re .  
I n  v i e w  of t h e  l a r g e  absorpt ion of m e t a l s ,  experiments on penetrat ion through 
a f i l m  requi re  very t h i n  f i lms.  
f i lms must be done independently. 

Exact measurement of  t h e  thickness  of t hese  
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approximately a f t e r  X equals  1 - 2 1.1, behind 
substances.  Both o p t i c a l  constants  increase  with an increase  i n  X, and become 
increas ingly  i d e n t i c a l .  This important f a c t  w a s  es tab l i shed  experimentally i n  
1903 i n  the  s tud ie s  of Gagen and Rubens. 
stood, i f  w e  no te  t h a t  t he  term 4aa/w becomes very l a r g e  i n  the  formula f o r  m 
i n  the  case of s u f f i c i e n t l y  s m a l l  w. 

Their  r e s u l t  can be r ead i ly  under- - /30 

This means t h a t  we approximately have 

(1.13) 

This approximate r e l a t ionsh ip  holds ,  beginning with X = 5p. 

Thus, i n  a c t u a l i t y  w e  have n = x =e. 
According t o  t h e  Fresnel  formulas, t he  r e f l e c t i o n  coe f f i c i en t  i n  the  case 

of normal incidence will be 
( n  - 1)?+ %* 

(n+ l ) '+r*  - 
Since n and x i n  our  case are l a r g e  (% l o ) ,  f o r  R w e  obtain 

R = 1 - -  2 

(1.14) 

(1.15) 

With an increase  i n  the  wave length , the  r e f l e c t i o n  coe f f i c i en t  of metals 
strives t o  uni ty .  

Formula (1.15) w a s  subs t an t i a t ed  with a l a r g e  amount of experimental 
material. It is even more i n t e r e s t i n g  t o  note  t h a t  i t  contains  no a r b i t r a r y  
constants .  

L e t  us  now tu rn  t o  water. L e t  us i nves t iga t e  t h e  manner i n  which its o p t i c a l  

u l t r a v i o l e t  
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I @ )  = I&+. 

TABLE 5 
- 

/ . i i n y l  n I i i n P I  n I".. P I  a 

0.211 1.4032 0,509 1,3360 0,768 1,3289 
0.303 1.3581 0,589 1,3330 1,028 1.3245 
0,405 1,3428 0,671 1,3308 1,256 1.3210 
0.4% 1,3371 

- 

(1.16) 

This same t a b l e  presents  t he  da ta  f o r  x: 

The absorption has a 
e, water thickness  of 67 m 
at  f i r s t  increases  slowly, 
l i e s  a t  X = 0.944 u .  

a A a  
4r' 

minimum at  0.5 u .  For a t tenuat ion  by 
i s  necessary.  With an increase  i n  X ,  
and then very rapidly. The absorption 

x=- 

I n  addi t ion  t o  t h i s  

(1.17) 
a f a c t o r  o f  
t he  absorption 
band of water 

band, water /32 
has an e n t i r e  series of bands i n  the  
in f r a red  region. 
the  following wave lengths  ( i n  u ) :  

They are located a t  

1,128--1,480 636- 8,s 5R 
1.833--1.2)85 9,74--1733 66 

3,194 31.0 79 
4,98 -6.49 50,O 103 

The band a t  3 .2  1-1 has t h e  s t ronges t  
absorpt ion,  then the re  is  a wide i n t e r v a l  
of s t rong absorption loca ted  a f t e r  11 u .  
Absorption i n  the  band a t  6 . 1  1-1 is weaker 
than i n  the  two sec t ions  of X ind ica ted  
above. 

Figure 3. 
( A  = n - 1.300; A l a r g e  por t ion  of t h e  l i q u i d  w a t e r  
Separate the  I n t e r v a l  of V i s ib l e  
Radiation).  ( s h i f t e d  toward l a r g e  A ) .  Consequently, 

f r e e  molecule. However, c e r t a i n  bands are c h a r a c t e r i s t i c  f o r  l i q u i d  water, and 
t h e i r  occurrence i s  caused by a change i n  t h e  energy l e v e l s  of t he  molecule H 0 

Refract ive Index of Water 
the  Dashed Lines 

bands represents  water vapor bands 

they must be a t t r i b u t e d  t o  absorption i n a  

2 
i n  t he  condensed state under the  inf luence  of neighbors. 
o ther ,  causing s t rong  absorption i n  the  e n t i r e  i n f r a r e d  region. 

The bands overlap each 
The s i t u a t i o n  

("We would l i k e  t o  cal l  the  a t t e n t i o n  of the reader  t o  the  f a c t  t h a t  t he  
absorpt ive power of a substance may be described by t h r e e  d i f f e r e n t  quan t i t i e s :  
t he  absorpt ion index x, t h e  r e f r a c t i v e  index x, and the  absorption coe f f i c i en t  
a. These q u a n t i t i e s  may be determined by t h e  r e l a t ionsh ips  (1 .9) ,  (l.lO), (1.16) 
and (1.17). 

perimentally.  
The q u a n t i t i e s  a, x and x may be usua l ly  ca lcu la ted  by means of a,  ex- 
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TABLE 6 

0,200 

0,415 
om 
0,300 
0,sOO 
0,700 

0,090 4d I 0,800 0,0204 13.0 
0,900 O,I61 I15 

O.OOO35 0.115 0,472 373 
0,368 299 

0.015 

0,00015 0,0596 1.05 
0,00107 0.51 I 1.21 1.30 I252 
0,0030 1,67 

3'8 0,995 

I I I I 1 II I 

i s  character ized i n  Table 7, where we employ c1 and t h e  r e f l e c t i o n  c o e f f i c i e n t  
f o r  normal incidence R ( i n  % ). 

When compiling t h i s  t a b l e ,  we employed n o t  only the o l d  da t a  of Ladenburg 
and Rubens, but a lso several new s t u d i e s .  I n  t h i s  connection, w e  would l i k e  t o  
point  out  t h e  c a r e f u l  research by Veyngerov (Ref. 25),  who determined R f o r  
water i n  t h e  region 11 - 18 1-1. H e  w a s  a b l e  t o  e l imina te  several experimental 
e r r o r s  of previous s tud ie s .  The r e s u l t s  which he  obtained pr imar i ly  coincide 
with t h e  r e s u l t s  of previous authors.  

W e  should poin t  out t h a t  an i n t e r e s t i n g  survey of  d a t a  on dispers ion and /33 
absorption of r a d i a t i o n  i n  w a t e r  was compiled i n  h i s  t i m e  by t h e  Kazan p h y s i c i s t  
D. A. Gol'dgammer (Ref. 26). 

I n  accordance with (1.14), t h e  r e f l e c t i o n  m a x i m a  are r e l a t e d  t o  t h e  
absorption bands. They are s h i f t e d  somewhat toward l a r g e  A .  "Metallic re f lec-  
tion"- (R -f 1 i n  the  case x -f a) w i l l  hold 
i n  a and R t o  X = 27 1-1 i s  shown i n  Figure 
300 1-1 i n t e r v a l  i s  shown i n  Figure 5. The 
reaching 15% i n  t h e  case X = 300 1-1. 

A i n  1-1 

Figure 4.  Coeff ic ients  of Reflect ion 
R and Absorption c1 of Radiation by 
Water. 

a t  t h e  absorption m a x i m a .  A change 
4, and t h e  behavior of R i n  t h e  25- 
quant i ty  R increases  a f t e r  X 2, 24 1-1, 

I n  Table 7 w e  present  t h e  o p t i c a l  
constants  of water which we computed 
according t o  c1 and R. The quant i ty  
n may be  determined according t o  t h e  
following formula 

which d i r e c t l y  follows from (1.14).  

With a f u r t h e r  increase  i n  A ,  
w e  e n t e r  t h e  region of  centimeter 
waves. Water a l s o  has  s t rong dis-  
pers ion here ,  which is caused by in- 
ert ia of dipoles  when they r o t a t e  i n  
t h e  external f i e l d .  "Friction", re- 
l a t e d  t o  t h i s  r o t a t i o n ,  l eads  t o  
s t rong  absorption. The dispers ion 

/34 
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theory i n  t h i s  region c lose ly  coincides wi th  numerous measurements. 

rrg 
az A change i n  the  electric proper t ies  

of w a t e r  wi th  a change i n  A i n  the  
centimeter region [ r e a l  ( E ' )  and imagin- 

constant]  i s  shown i n  Figure 6 .  
20 ary (E") por t ions  of t he  d i e l e c t r i c  

W e  should note  t h a t  n and x, com- 

d i r e c t l y  i n t o  the  n and x ind ica ted  a t  

t h i s  i s  t h a t  the  eigen absorption bands, 
which do not  allow f o r  t he  theory of 
r o t a t i o n a l  d i spers ion ,  lying i n  t h i s  

fl puted t h e o r e t i c a l l y ,  do not  change 25 50 io0 200 300 A i n  1 ~ .  

Figure 5. Coeff ic ient  f o r  Reflect ion the  end of Table 7.  The reason f o r  
of Long Thermal Waves by Water. 

region are of s i g n i f i c a n t  importance f o r  A 5 1  - cm. 

I n  the  region of m e t e r  waves, the  d i e l e c t r i c  constant acquires  s t a t i s t i c a l  
value (n = 9 ,  E = 81). 

I n  connection with the  "metall ic" r e f l e c t i o n  i n  absorption bands mentioned 
here ,  i n  conclusion l e t  us d i scuss  one prevalent  e r r o r .  This e r r o r  i s  r e l a t ed  
t o  the  concept of the  "blackness" degree of a given body i n  a c e r t a i n  s p e c t r a l  
i n t e r v a l .  

S t r i c t l y  speaking, i n  order  t o  approximate an absolu te ly  black body, i t  
is  necessary t o  take a substance with a very l a rge  absorption coe f f i c i en t .  
o ther  words, it i s  assumed t h a t  the body i s  'lblack'' i n  those s p e c t r a l  regions 

example, w e  may poin t  t o  metals. 
ever ,  they are very f a r  from a black body. 

I n  

where s t rong  absorption occurs. This opinion i s  erroneous. By way of an - / 35 
They s t rongly  absorb v i s i b l e  r ad ia t ion ;  how- 

The degree of blackness of a given body -- i .e . ,  t he  ex ten t  t o  which i t  
approximates an absolu te ly  black body -- may n a t u r a l l y  be  determined from t h e  
absorpt ive power of t he  body a. 
real  body a < 1. 
E ,  and the  r e f l e c t i o n  coe f f i c i en t  i s  R, w e  ob ta in  t h e  following f o r  a: 

For an absolutely black body a = 1; f o r  any 
I f  t h e  body thickness  ( i n  the  d i r e c t i o n  of r e f r ac t ed  rays)  is 

The f i r s t  parenthesis  gives  t h e  por t ion  of t he  f l u x  penetrat ing t h e  body. 
second parenthes is  i nd ica t e s  t he  po r t ion  of t he  f l u x  penet ra t ing  t h e  body which 
is absorbed by t h e  body. 

The 

An absolutely black body may be character ized by two fea tu res :  (1) the  /36 
-- 4x xk 

r e f l e c t i o n  R equals zero; (2) t he  transmission e A equals zero. 

The f i r s t  property depends on the  behavior of t he  substance i n  a given 
spectral region,  and upon t h e  r ad ia t ion  angle of incidence.  
depends i n  addi t ion  on the  body thickness .  
compare t h e  degree of "blackness" of the  body i n  d i f f e r e n t  s p e c t r a l  i n t e r v a l s  

The second property 
It may be r ead i ly  seen t h a t ,  i f  w e  
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when t h e  thickness  remains unchanged, t he  degree of blackness f o r  the  body a 
w i l l  be a t  a maximum f o r  a c e r t a i n  absorpt ion coe f f i c i en t  X .  For very s m a l l  
x and very l a r g e  x, a w i l l  be c lose  t o  zero. 

S imi la r ly  t o  t h i s ,  t he  degree of 
blackness f o r  the  body w i l l  change when 
the re  i s  a change i n  the  angle ( i f  t he  
body is  a plane layer )  of incidence of 
rays  on t h e  body. It w i l l  equal zero 
i n  t h e  case of t angen t i a l  incidence 
(R = 1) and w i l l  be s m a l l  i n  t he  case 
of normal incidence (R is  a t  a minimum). 

I f  both "blackness" c h a r a c t e r i s t i c s  
i n t e r e s t  us separa te ly ,  w e  must der ive  
two d i f f e r e n t  criteria of "blackness". 

x tM 
Figure 6 .  We should point  out  t h a t  the  
of t he  Water Dielectric Constant i n  requirements f o r  absolute  "blackness" 
the  Centimeter Region. with respec t  t o  both f ea tu res  a t  once 

are mutually exclusive.  A t  the  poin t  
where the  body is "blacker" i n  terms of the  f i r s t  c h a r a c t e r i s t i c ,  i t  w i l l  be 
less "black" i n  terms of the  second c h a r a c t e r i s t i c .  

Real and Imaginary Sect ions 

It is  w e l l  known t h a t  i n  electrodynamics a black body cannot be deter-  /37 
mined by a s u i t a b l e  s e l e c t i o n  of boundary condi t ions.  
d i f f r a c t i o n  theory,  i n  order  t o  obta in  a black body one r e s o r t s  t o  mathematical 

I n  formal terms, i n  t h e  
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Riemann space of i n f i n i t e  shortness  [(Ref. 3 0 ) ,  page 8531. 
"a hole  i n  a vacuum". 

It is  equivalent  t o  

I n  electrodynamics t h e  physical  method f o r  obtaining an i d e a l l y  black 
body is  as follows. 
of t h i s  substance must have a thickness  R such t h a t  

A substance with n = 1 and x -f 0 i s  se l ec t ed ,  and a layer  

* x 1 + * .  i, 

Thus, i f  the  body thickness  i s  l a r g e  enough, i t  w i l l  be c l o s e s t  t o  a black 
body i n  those s p e c t r a l  regions where the  substance is the  most t ransparent ,  
i .e.,  at t h a t  po in t  where Im - 1 I << 1. 
blacker  i n  the  v i s i b l e  region,  where the  w a t e r  i s  t ransparent ,  than i t  w i l l  be 
i n  t h e  in f r a red  region. 

For example, a deep r e se rvo i r  w i l l  be 

CHAPTER I1 

- I 3 8  FUNDAMENTAL FORMULAS 

L e t  us present  a p rec i se  so lu t ion  f o r  the  problem of d i f f r a c t i o n  of e lec t ro-  
magnetic waves i n  a sphere [ see  (Ref. 31-35, 14,  3 6 - 3 9 ] ] .  

I n  the  case under considerat ion,  the  sur face  of the sphere w i l l  be the  
sur face  of d i scont inui ty .  
i n  sphe r i ca l  coordinates.  

Therefore,  w e  may conveniently consider t he  problem 

We s h a l l  show t h a t  the  problem of f ind ing  the  s i x  unknown funct ions (E and 
H) may be reduced t o  the  problem of f inding two funct ions -- of the  e l e c t r i c  
and magnetic p o t e n t i a l s  (U1 and U2). 

s i m p l e  d i f f e r e n t i a t i o n  from these  po ten t i a l s .  The p o t e n t i a l s  U1 and U2 

represent  so lu t ions  of the  o s c i l l a t o r y  equation. We may obta in  them by 
employing the Fourier  method i n  the  form of i n f i n i t e  sums of s p e c i a l  so lu t ions  
with i n d e f i n i t e  coe f f i c i en t s .  The coe f f i c i en t s  may be determined by "joining" 
the values  wi th in  and outs ide  the  sphere.  

The f i e l d  components may be computed by 

Thus, t he  des i red  so lu t ion  process w i l l  cons i s t  of t h e  following pa r t s :  

(1) Reduction of t h e  system of equations and boundary conditions f o r  t he  
f i e l d  components t o  equations and conditions f o r  the  p o t e n t i a l s  ; 

(2) Solut ion of the  equation f o r  t he  p o t e n t i a l s ;  

(3) Reversion back t o  the  f i e l d s  (der iva t ion  of t he  formulas f o r  t he  f i e l d s  
from the  po ten t i a l s )  and determination of formulas f o r  i n t e n s i t i e s  ; 

( 4 )  Derivation of formulas f o r  coe f f i c i en t s  of s c a t t e r i n g  and a t tenuat ion .  

§ 1. Po ten t i a l s  

L e t  us s e l e c t  the  o r i g i n  i n  the  center  of t he  sphere,  and let us draw the  
ax i s  as i s  shown i n  Figure 7. W e  w i l l  employ a t o  designate  the  rad ius  of the  
sphere.  L e t  a plane wave which is polar ized  l i n e a r l y  f a l l  upon a par t ic le  i n  the  
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i I It1 I I I 
negat ive d i r e c t i o n  on the Z-axis. 
X - a x i s  is t h e  d i r ec t ion  of electric 
o s c i l l a t i o n s ,  and the  Y-axis is the  /39 
d i rec t ion  of magnetic o s c i l l a t i o n s .  
The electric and magnetic f i e l d s  i n  the  
inc ident  wave may be described by the  

The 

. -  
\ I  
'J 

3 / wave vec tor  of the  inc ident  r ad ia t ion  
i n  the  outer  sphere ( i n  which our sphere 
i s  immersed); ko =A! -- r ad ia t ion  wave 

C - 

Figure 7 .  Arrangement of Axes when vec tor  i n  a vacuuml. 
Deriving the  Fundamental Formulas. 

For s impl i c i ty  of no ta t ion ,  from 
t h i s  po in t  on w e  s h a l l  omit t he  f a c t o r  E 

be necessary t o  introduce t h i s  f a c t o r  i n  the  expression f o r  t he  f i e l d s  i n  the  
f i n a l  formulas . 

i n  t he  intermediate  formulas. It w i l l  
0 

I n  the  sphe r i ca l  coordinate system (see Figure 7 ) ,  t he  Maxwell equations /40 
(1.3) may be wr i t t en  as follows: 

("We should note  t h a t  i n  the  art icle of Wolfson i n  Handbuch der  Physik 
(Ref. 39) , an e r r o r  is included which then leads t o  inva l id  f i n a l  formulas. 
Wolfson selects the  amplitudes of t he  f i e l d s  Eo and Ho i n  t h e  following way: 

Eop=EQ E w = E b = O  
HW=-EO Hb= Hh=O. 

It may be r ead i ly  seen t h a t  these  f i e l d s  (ma # 1) do not  s a t i s f y  the  

This e r r o r  s l ipped  i n t o  the  book of V. D. Kupradze [see Maxwell equations.  
(Ref. 87) ,  equation (18) on page 161. 
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The inc ident  f i e l d  e x c i t e s  t he  inner  f i e l d  i n  t h e  sphere. The outer  and 
inner  f i e l d s  must s a t i s f y  the  condi t ions of cont inui ty  of the  t angen t i a l  com- 
ponents on the  sur face  of t he  sphere:  

The index i designates  the  q u a n t i t i e s  pe r t a in ing  t o  the  sphere,  and the  
index a - k pe r t a ins  t o  the  outer  medium. 
condi t ions (2.8) and (2.9) cannot be s a t i s f i e d ,  i f  i t  is  not  assumed t h a t  there  i s  
a c e r t a i n  d i f f r a c t i n g  f i e l d  
Eo. I n  addi t ion ,  s ince  condi t ions (2.8) - 
(2.9) must hold i n  every moment of t i m e ,  t h i s  means t h a t  a l l  t h e  f i e l d s  -- in-  
c ident ,  d i f f r a c t i n g ,  and exci ted i n  t h e  sphere ( inner)  -- must have one and 
the  same t i m e  dependence. This is poss ib le  i f  a l l  t h ree  f i e l d s  have one and 
the  same frequency. 

It is known t h a t  a system of boundary, 

E i n  outer  space,  along QZth the  inc ident  f i e l d  
Thus, t he  outer  f i e l d  Ea = Eo + E. 

Thus, i n  cont ras t  t o  Raman s c a t t e r i n g ,  f o r  example, t h e  s c a t t e r i n g  under 
considerat ion here  must occur without a change i n  frequency. 

W e  s h a l l  represent  an a r b i t r a r y  electromagnetic f i e l d  as the  superposi t ion 
of two types of o s c i l l a t i o n s .  

W e  s h a l l  c a l l  t he  f i r s t  type e l e c t r i c  o s c i l l a t i o n s ,  and w e  s h a l l  assume 
t h a t  t he  r a d i a l  magnetic f i e l d  component i n  these o s c i l l a t i o n s  equals  zero a t  
every poin t :  

/41 

H,=O;. E , f Q .  (2.  lo) 
The second type i s  magnetic o s c i l l a t i o n s .  The r a d i a l  component of the  

magnetic f i e l d  i n  magnetic o s c i l l a t i o n s  d i f f e r s  from zero,  and the  e l e c t r i c  
component equals  zero everywhere: 

E,=@ H,#O. (2.11) 

I n  the  case of e l e c t r i c  o s c i l l a t i o n s ,  we  obtain the  following from equation 
(2.5) : 

This r e l a t ionsh ip  w i l l  be s a t i s f i e d ,  i f  it is  assumed t h a t  s i n  BE and E a r e  

de r iva t ives  of a c e r t a i n  t h i r d  funct ion 0: t he  f i r s t  with respec t  t o  $, and the 
second with respect t o  8: 

9 0 

Subs t i t u t ing  these  r e l a t ionsh ips  i n  formulas (2.3) and (2.4) , w e  obtain 

W e  may s a t i s f y  these  r e l a t ionsh ips ,  i f  w e  

c e r t a i n  new funct ion.  W e  then obta in  

L.?k , where JI is a r a r  assume t h a t  0 = 
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Subs t i t u t ing  this i n  formulas (2.2), (2.6) and (2.7), w e  no te  that i f  we  i n t ro -  
duce t h e  funct ion U 

assumes the  following form 

= k -- i n s t ead  of the  func t ion  $ -- t he  formula (2.2) 
1 r  

Era-" (  t s i n e  A a ( -sfn9--- aul) a6 - arp d ('8%)) sine dv (2.12) 

s i n c e  both lat ter formulas lead t o  one and the  same equation -- t h e  wave equat ion 
f o r  t h e  funct ion U l ( r ,  8, Cp): 

(2.13) 

+ kW, - AU, + k W ,  = 0. 

Employing t h e  r e l a t ionsh ips  ind ica ted  above and s u b s t i t u t i n g  the  deriva- /42 
t i v e s  with respec t  t o  8 and 
t i o n  (2.13) i n  t h e  expression f o r  Er,  we obta in  t h e  following r e l a t ionsh ips :  

+ by the  de r iva t ives  with respect  t o  r from equa- 

1 dz E, =5 a (r U,) + k*r U,; 

(2.14) 

They express a l l  t he  f i e l d  components f o r  the  case H 

func t ion  U l ( r ,  8 ,  4) -- t he  p o t e n t i a l  of electric o s c i l l a t i o n s .  

r ead i ly  seen t h a t  equations (2.14) form a so lu t ion  of the  system of Maxwell 
equat ions,  i f  U is a so lu t ion  of the wave equation. 

= 0 by means of one r 

I f  w e  s u b s t i t u t e  t hese  expressions i n  equations (2.2) - (2.71, i t  may be 

1 

The s i t u a t i o n  is the  same f o r  magnetic o s c i l l a t i o n s .  Here a l l  the  f i e l d  
components may be expressed by means of a c e r t a i n  funct ion U 2 ( r ,  8 ,  Cp) -- t he  
p o t e n t i a l  of magnetic o s c i l l a t i o n s .  

I n  the  genera l  case, o s c i l l a t i o n s  of both types w i l l  e x i s t  i n  the  f i e l d .  
W e  thus  obta in  the  following expressions f o r  t h e  f i e l d  components: 

(2.15) 

The funct ions U and U are so lu t ions  of t he  wave equation 1 2 

28 



AUi+ kWj E 0, j =X 1,2. (2.16) 

The boundary condi t ions f o r  the  p o t e n t i a l s  U and U 1 2 on t h e  sphere may be /43 
obtained from the  cont inui ty  requirement of the  t angen t i a l  (0 and 4) components 
of t he  f i e l d s .  W e  may see from equations (2.15) t h a t  f o r  t h i s  purpose it i s  
necessary t h a t  t he  following four  q u a n t i t i e s  be  continuous on t h e  sur face  of t h e  
sphere : a m q W ;  5 (tu,); 

rU6 s ( r U , J .  
(2.17) i d 

It is important t h a t  t he  boundary condi t ions are not  mixed -- i .e.,  are 
separate f o r  U and U2. This ind ica t e s  t he  mutual independence of e l e c t r i c  and 

magnetic o s c i l l a t i o n s .  I n  view of t h i s  independence, t h e  electric o s c i l l a t i o n s  
i n  an inc ident  wave are responsible  f o r  t h e  e l e c t r i c  o s c i l l a t i o n s  i n  d i f f r a c t e d  
and r e f r ac t ed  waves, and the  magnetic o s c i l l a t i o n s  i n  the  inc ident  wave are 
responsible  f o r  t h e  magnetic o s c i l l a t i o n s  i n  exc i ted  waves. 
the so lu t ion  of only one type of o s c i l l a t i o n s ,  s i n c e  both types occur i n  a plane 
wave f a l l i n g  on a sphere.  

1 

W e  cannot treat 

A t  i n f i n i t y ,  t he  funct ions U and U must s a t i s f y  t h e  r ad ia t ion  p r inc ip l e .  1 2 
Thus, our problem cons i s t s  of f ind ing  two independent so lu t ions  of t he  wave 
equation with independent boundary conditions.  

§ 2. Solut ion of Equations f o r  t h e  Po ten t i a l s  

W e  s h a l l  so lve  the  equations f o r  t he  p o t e n t i a l s  U1 and U2 (2.16) by employ- 

ing the  Fourier  method. W e  may set  the  following as a s p e c i a l  so lu t ion :  

U = f W  Y(% cp). ’ 
Dividing the  va r i ab le s ,  w e  ob ta in  the  following equations f o r  f and Y: 

(2.18) 

(2.19) 

The equation f o r  Y is the  w e l l  known equation f o r  sphe r i ca l  funct ions.  - / 4 4  

It has a single-valued and continuous so lu t ion  over t h e  e n t i r e  sphere only 
f o r  X = n (n + l), where n = 0, 1, 2, ... 

I n  t h i s  case, t h e  following sphe r i ca l  funct ions represent  i ts  so lu t ion  
[(Ref. 4 0 ) ,  page 6061: 

en 

Ym(9,cp) = (IOpR(cos0) + (u,cos rn?+bm sin my) p’m’(cosB). 
a-1 

(”Since t h e  equations f o r  both p o t e n t i a l s  are t h e  same, w e  s h a l l  no t  
w r i t e  t h e  index f o r  U. 
which are d i f f e r e n t  f o r  U1 and U2. 

The index appears when w e  s a t i s f y  the  boundary condi t ions,  
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Here P (cos e )  i s  the  Legendre polynomial: n 

* (2n - 2k)! cosn-=B 
ca I 
k-0 

(2.20) 

The funct ions P?)(cos e)  are r e l a t e d  with P (cos e) by means of t he  following 

formula : 
n 

m d n P  (COSB) p" (cos 8) = (sin 4) & Bn . (2.21) 

W e  may make the  following s u b s t i t u t i o n  i n  equation (2.18) 

W e  now obtain the  following equation (x = kr )  f o r  R (x): 
n 

This i s  the  Bessel equation, and i t s  so lu t ion  is represented by c y l i n d r i c a l  
funct ions with ha l f - in t eg ra l  index: 

R m  ( x )  e Z 1 (x). 
r+- a 

[Here w e  employ Z 

Rn(x)]. Thus, t he  h s p e c i a l  so lu t ion  of equation (2.16) w i l l  be: 

1 t o  designate  the  general  so lu t ion  of t he  equation f o r  n+- 

1 
(2.22) 

Of a l l  t he  c y l i n d r i c a l  func t ions ,  only funct ions of t he  f i r s t  type J 1 / 4 5  n+- - 
2 

Therefore,  they are the  only ones which may be  u t i l i z e d  are f i n i t e  a t  zero. 
f o r  t h e  so lu t ion  wi th in  t h e  sphere. 
with the  r ad ia t ion  p r i n c i p l e ,  t he  so lu t ion  must have t h e  na tu re  of a diverging 
wave. 

Outside of t he  sphere,  i n  accordance 

Since w e  chose t h e  t i m e  f a c t o r  i n  the  form e + i u t ,  only t h e  Hankel func t ion  
o f - t h e  second type g ives  us a wave diverging from the  d i f f r a c t i o n  source 
(el(ut-kr)) [ see  the  asymptotic expressions of c y l i n d r i c a l  funct ions i n  the  case 
x > n i n  111, 11. 
t h e  so lu t ion  outs ide  of t h e  sphere.  

Consequently, only t h i s  func t ion  can be employed t o  compile 
W e  s h a l l  employ t h e  following no ta t ionz l  

(2.23) 

(')In order  t o  avoid confusion, we  should note  t h a t  i n  c e r t a i n  cases t h e  
same nota t ions  JI and 5 are introduced f o r  t he  func t ions  d i f f e r i n g  from ours  

by the  f a c t o r  l / x  [see (Ref. 30),  page 8941. 
n n 
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The funct ions Jln and 

equation 

& - e4k~t0m9 cos.p . cos (1; 
#k r a i n 8  E: =-e u sin?; 

5, are two independent s o l u t i o n s  of t h e  following 

(2.24) 

The s p e c i a l  s o l u t i o n  (2.22) wi th in  t h e  sphere w i l l  b e  of t h e  type 
5, (kr) 

k r  

The t o t a l  s o l u t i o n  must be represented i n  t h e  form of t h e  superposi t ion of 
These i n d e f i n i t e  constants  may 

'n Yn , and outs ide  of t h e  sphere i t  w i l l  b e  of t h e  type Jln (kr 1 
kr 

s p e c i a l  so lu t ions  wi th  i n d e f i n i t e  c o e f f i c i e n t s .  
be  computed from t h e  boundary conditions.  

The inc ident  wave p a r t i c i p a t e s  i n  t h e  boundary condi t ions (2.81, (2.9) i n  
t h e  outer  f i e l d ,  along with t h e  d i f f r a c t e d  W a v e .  Therefore,  w e  must f i r s t  
compute t h e  e lectr ic  and magnetic p o t e n t i a l s  of t h e  inc ident  wave, which a l s o  
must be represented i n  t h e  form of series with respect  t o  Z 

be  r e a d i l y  done, i f  w e  employ t h e  w e l l  known expansion of a plane wave i n  terms 
of Legendre polynomials: 

1 Yn . n+- 
2 

This may /46 

(2.25) 

(2.26) 

D i f f e r e n t i a t i n g  the r i g h t  and l e f t  hand s i d e s  of equation (2.25) with 
respec t  t o  0 and multiplying by GLL!#L and 2Lk! i  ma , we r e a d i l y  obta in  

i k  r i k a r  a 

(2.27) 
W I 

dP0 - The zero terms i n  the sums vanish,  s i n c e  - - 0. Comparing t h e  formulas f o r  
de 

0 
r E and H: with t h e  formulas (2.15) which determine t h e  f i e l d s  i n  terms of the 

p o t e n t i a l s  corresponding t o  them, w e  r e a d i l y  f i n d  t h a t  t h e  electric and magnetic 
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p o t e n t i a l s  i n  the  inc ident  wave w i l l  be 

(2.28) 

(2.30) 

i Here Ua i s  the  is the  p o t e n t i a l  of t he  
i n t e r n a l  f i e ld . ?  I n  view of the  f a c t  t h a t  these  l i n e a r  r e l a t ionsh ips  must hold 
a t  every poin t  of t he  sphere,  t h e  p o t e n t i a l s  Ua and U i  can have only the  same 
angular dependence as t h e  p o t e n t i a l s  of inc ident  rad ia t ion .  
following sphe r i ca l  funct ions are included i n  our so lu t ion :  

o t e n t i a l  of t h e d i f f r a c t e d  f i e l d ,  and U 

Thus, only the  

k'g& 9) =P~"(cosB)coscp- f o r  t h e  e l e c t r i c  p o t e n t i a l ,  

With allowance f o r  t h i s  f a c t o r ,  the  general  expressions f o r  t he  p o t e n t i a l s  
UT , Uz , U'; , Ui may be w r i t t e n  as follows, by analogy with t h e  p o t e n t i a l s  of 

inc ident  r ad ia t ion  : 

u3 I 

00 I 

(2.31) 

(2.32) 

We should recall t h a t  both sphe r i ca l  funct ions s a t i s f y  the  equation (2 .19) /48  
[ A  = &(a  + l)]. It thus follows t h a t  Pkl)(cos 9) s a t i s f i e s  t he  following 

equation 

(')We shall  designate  t h e  d i f f r a c t e d  f i e l d s  by the index a. W e  s h a l l  
omit t h i s  index i n  subsequent chapters.  
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(2.33) 

The c o e f f i c i e n t s  CR, BR, C$, Bg must b e  determined s o  t h a t  t he  condi t ions (2.29)- 

(2.30) hold. These condi t ions produce (with respec t  t o  the  p a i r s  of coe f f i c i en t s  
CR, C$ and BE, B* with t h e  given index R) two independent systems of two 

l i n e a r  equations each. W e  may w r i t e  them, by introducing the following notat ion:  
R 

-- %a h a  (2.34) P. ma= po - ma = k,, - a c A - koa = po; 

where 2 = - k i  = m is the  relative (complex) r e f r a c t i v e  index. 
ka 

For C and C*, w e  have: 

I 
R R 

A similar system i s  obtained f o r  B and B$: R 

(2.35) 

(2.36) 

The systems (2.35) and (2.36) d e f i n i t e l y  determine the  c o e f f i c i e n t s  i n  t h e  
p o t e n t i a l s ,  wi th in  an accuracy of a l l  numerical f ac to r s .  
respec t  t o  C 

Solving them with 
and BR, w e  obta in  R 

(2.37) 

Similar  expressions are obtained f o r  C t  and B*, which w e  s h a l l  no t  w r i t e  R 
down due t o  lack  of space. 

Subs t i t u t ing  these  expressions i n  (2.31) and (2 .32 ) ,  w e  obta in  a unique /49 
so lu t ion  of t h e  equations f o r  the  p o t e n t i a l s  s a t i s f y i n g  a l l  of t he  boundary 
condi t ions.  

§ 3. Diff rac ted  F ie lds  and I n t e n s i t i e s  

I n  accordance with (2 .15) ,  w e  may obta in  t h e  expressions f o r  t he  components 
of both t h e  i n t e r n a l  a n d d i f f r a c t e d f i e l d s  from t h e  po ten t i a l s .  
be i n t e r e s t e d  i n  a d i f f r a c t e d  f i e l d ,  w e  s h a l l  only w r i t e  its components here.  
Thus, w e  may introduce t h e  f a c t o r  Eo omitted previously.  

Since we s h a l l  

(2.38) 
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(2.38) 

The primes designate  t h e  derivatives with respec t  t o  the argument indi-  
cated under t h e  index of t h e  funct ion (k r and cos 6 ) .  a 
d i s tance  from t h e  p a r t i c l e ,  i n  t h e  so-called wave zone, w e  may disregard t h e  
components E and H as compared with the  6 and 0 components. The d i f f r a c t e d  

f i e l d  w i l l  be  a t ransverse  wave which is  propagated from t h e  d i f f r a c t i o n  source. 

/50 
A t  a s u f f i c i e n t l y  l a r g e  

r r 

L e t  us  introduce t h e  following notat ion:  

(2.39) 

(2.40) 

Employing asymptotic expressions f o r  t h e  funct ions cg(kar) (kar >> R: see 

(2.41) 
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According t o  these  formulas, t h e d i f f r a c t e d  f i e l d  may be represented i n  the  
form of sums of ind iv idua l  p a r t i a l  waves. 
p a r t i a l  wave may be determined by the  numbers c 

on p and m. 

The e x c i t a t i o n  i n t e n s i t y  of the  R& 
and bR,  which depend e s s e n t i a l l y  R 

For s m a l l  p (see Chapter IV), only t h e  c o e f f i c i e n t s  c and bR with s m a l l  R 
The f i e l d  r e l a t e d  with the  coe f f i c i en t  numbers are of s i g n i f i c a n t  importance. 

c1 corresponds t o  the  so-called Rayleigh sca t t e r ing .  

W e  s h a l l  show la ter  on t h a t  t h e  e x c i t a t i o n  i n t e n s i t y  of subsequent p a r t i a l  
waves increases  when the  p a r t i c l e  dimensions increase.  All the  f a r t h e r  removed 
p a r t i a l  electric and magnetic waves begin t o  come i n t o  play,  and t h e  i n t e n s i t y  /51 
of waves with s m a l l  numbers o s c i l l a t e s .  With an increase  i n  R, t he  o s c i l l a t i o n  
amplitude decreases approximately as 1 / R .  
p a r t i a l  waves which must be  taken i n t o  account i s  of t he  order  p 
The e x c i t a t i o n  i n t e n s i t y  of subsequent waves rap id ly  decreases ,  s o  t h a t  t he  
number p determines the  order  of the  number a t  which w e  can t runca te  our i n f i n i t e  
series. The la t ter  f a c t  makes i t  poss ib le  t o  estimate t h e  d is tances  r a t  which 
w e  may employ formula (2.41) in s t ead  of the  general  formulas (2.38). Since the  
asymptotic representa t ions  which w e  have employed are v a l i d  i n  the  case x >> R 
(111, 1) , t h i s  means t h a t  w e  can employ formulas (2.41) i n  the  case r >> a, 
s i n c e  R Q p. 
holds.  ' 

For l a rge  p a r t i c l e s ,  t he  number of 
(111, 1) 

I n  the  problems i n  which w e  are i n t e r e s t e d ,  t h i s  condi t ion always 

The following is  r ead i ly  apparent from the  formulas (2.41) f o r  e l e c t r i c  
and magnetic f i e l d s  i n  a s c a t t e r e d  wave: 

1 
mu 
--%=E; 

These equations hold not  only f o r  complete f i e l d s ,  bu t  a l s o  f o r  f i e l d s  of 
ind iv idua l  p a r t i a l  o s c i l l a t i o n ,  j u s t  as f o r  i t s  e l e c t r i c  and magnetic port ion.  
W e  f i nd  from t h e  subsequent equations t h a t  both f o r  magnetic and electric 
por t ions  of ind iv idua l  p a r t i a l  o s c i l l a t i o n s ,  t he  following formula holds  

~IE,'+m-g = 0. 
This designates  the  mutually perpendicular na tu re  of t he  e l e c t r i c  and 

magnetic f i e l d s  f o r  t h e  e l e c t r i c  and magnetic por t ion  of each par t ia l  wave. 
i s  apparent t h a t  complete f i e l d s  have the  same property.  

It 

The sums included i n  the  formulas f o r  E: and E a  ( j u s t  as f o r  He and H ) 4 4 
are complex expressions which, general ly  speaking, have d i f f e r e n t  phases i n  the  
given d i r e c t i o n  ( 0 ,  4 ) .  This means t h a t  s ca t t e r ed  l i g h t  w i l l  be polar ized  
e l l i p t i c a l l y  ( inc ident  l i g h t  which is  l i n e a r l y  po la r i zed ) ,  and t h i s  po la r i za t ion  
w i l l  be d i f f e r e n t  i n  d i f f e r e n t  d i r ec t ions .  I f ,  on the  o ther  hand, w e  confine 
ourselves  t o  examining only Rayleigh s c a t t e r i n g ,  e l l i p t i c a l  po la r i za t ion  
vanishes (see I V ,  1). The f i r s t  electric p a r t i a l  wave is  polar ized l i n e a r l y .  
The l i n e a r  po la r i za t ion  w i l l  occur i n  the  d i r ec t ions  4 = 0 and 4 = E 

2 
general  case. 
subs t an t i a t ed  i n  experiments on co l lo id  so lu t ions .  
s ca t t e r ed  l i g h t  i s  po la r i zed , in  genera l ,  as i s  predic ted  by theory. 

i n  the  /52 
This important conclusion from the  Mie theory has been repeatedly 

The e s s e n t i a l  amount of 
I n  seve ra l  
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cases, however, t he re  is a l a rge  po r t ion  of unpolarized l i g h t .  
regarded as represent ing an e r r o r  i n  the  theory. It simply means t h a t  under 
the  condi t ions of t h e  corresponding experiment those assumptions which under l ie  
our discussions do not  hold. Most frequent;ly, t h i s  means t h a t  co l lo id  p a r t i c l e s  
cannot be regarded as spheres [see, f o r  example, t h e  experiments of S te ib ing  
(Ref. 41) on co l lo id  so lu t ions  of gold] .  Sometimes t h i s  may b e  caused by a 
high concentrat ion of p a r t i c l e s ,  s o  t h a t  t he re  is a l a r g e  por t ion  of mult iply 
s c a t t e r e d  l i g h t  i n  the  sca t t e red  bundle. I n  t h i s  case, the  conclusion derived 
from the  theory presented above i s  not  va l id .  

This cannot be 

L e t  us now c a l c u l a t e  t he  i n t e n s i t i e s  i n  s c a t t e r e d  l i g h t .  

W e  ob ta in  the  following from (1.7) on the  
f i e l d s  Eo and €Io f o r  t he  i n t e n s i t y  of inc ident  
absorpt ion : 

W e  ob ta in  (Ee = H = 0) f o r  t h e  i n t e n s i t y  
Cp 

l i g h t ,  i .e . ,  f o r  t h e  i n t e n s i t y  of t h a t  por t ion  

b a s i s  of formulas (2.1) f o r  t h e  
r ad ia t ion  I when the re  is no 0' 

(2.42) 

Cp of t h e  component o f  s ca t t e r ed  

of s c a t t e r e d  l i g h t  which passes - -  
through t h e - p o l a r i z e r  with the  a x i s  p a r a l l e l  t o  t h e  cu rv i l i nea r  a x i s  of $, on 
the  b a s i s  of (1.7)  and (2.41): 

m 

(2.43) 

S imi la r ly ,  w e  have the  following f o r  t he  0-component of (E 

(1.7) and (2.41): 

= He = 0) from 4 

(2.44) 

The formulas (2.43) and (2.44) are very important. They g ive  the  inten? /53 
s i t y  of s ca t t e r ed  l i g h t  f o r  t h e  case when the  inc iden t  bundle is polar ized 
l i n e a r l y .  
e l e c t r i c  vec tor  i n  the  inc iden t  wave and the  p ro jec t ion  of t h e  s c a t t e r i n g  
d i r ec t ion  on t h e  plane which is perpendicular t o  the  d i r e c t i o n  i n  which the  
inc ident  wave i s  propagated. 

W e  should recall  t h a t  Cp is  the  angle between the  d i r e c t i o n  of t h e  

We custrrmarily dea l  with nonpolarized l i g h t ,  i n  which the  d i r e c t i o n  of t he  

and Ie may be  obtained i n  t h i s  case by averaging t h e  formulas 
electric vec tor  continuously r o t a t e s  i n  space. Consequently, t he  formulas f o r  
t he  q u a n t i t i e s  I 4 
ind ica ted  above over t h e  angle 4.  Since cos2 Cp = s i n 2  4 = , f o r  n a t u r a l  

2 
l i g h t ,  w e  have 

(2.45) 

36 



For purposes of b rev i ty ,  we s h a l l  designate  the  sumcontainedin I 

C 

t he  moduli of these  sums.by il and i2. 

ca lcu la t ing  t h e  i n t e n s i t i e s  I 

I 

s ta r t  with the  formulas given he re ,  bu t  with t h e  formulas which may be ex t rac ted  
d i r e c t l y  from t h e  study of M i e .  
are t w i c e  as la rge .  W e  s h a l l  d i scuss  t h i s  problem below. 

by means of 4 
and s h a l l  des igna te  the  sum i n  Ie by Ce. W e  s h a l l  designate  the  squares of 

4, 
Many s t u d i e s  have been devoted t o  

and Ie (we s h a l l  a l s o  designate  them by I and ($ 1 
o r  by Is and Ip) f o r  d i f f e r e n t  s p e c i f i c  cases. The authors  usua l ly  did no t  2 

The formulas thus obtained give values  which 

§ 4. Coeff ic ien ts  of Sca t t e r ing  and Attenuation 

The s c a t t e r i n g  process cons i s t s  of  two, e s s e n t i a l l y  d i f f e r e n t  port ions:  
t h e  i n i t i a l ,  non-stationary por t ion  of t h e  process,  and the  s t a t i o n a r y  port ion.  
We are only i n t e r e s t e d  i n  the  second port ion.  I n  the  s t a t i o n a r y  process ,  t h e  
a lgebra ic  value of t he  energy f l u x  through any closed su r face  must equal  zero,  
i f  t he re  are no sources o r  discharges of t he  electromagnetic f i e l d  wi th in  t h e  
surface.  The e f f i c i ency  of the  sources must be  determined when the  l a t te r  are 
present .  Our absorbing p a r t i c l e  represents  a discharge fo r  t h e  electromagnetic 
f i e l d .  Therefore,  when taken with an inverse  index, t he  complete energy f l u x  

center  of our p a r t i c l e  ( radius  of t he  sphere r > > A > ,  must equal t h e  amount of 
energy absorbed by t h e  p a r t i c l e  per  u n i t  of t i m e .  
quant i ty ,  r e f e r r ed  t o  i n t e n s i t y  of t he  inc ident  f l u x ,  by k,, and s h a l l  c a l l  it 

t h e  absorpt ion c o e f f i c i e n t  of t he  p a r t i c l e .  
and i s  sometimes ca l l ed  t h e  e f f e c t i v e  diameter f o r  absorption. W e  may 
determine t h e  s c a t t e r i n g  coe f f i c i en t  k 

f l u x  of electromagnetic energy sca t t e red  by a p a r t i c l e  i n  a l l  d i r e c t i o n s ,  a l s o  
r e fe r r ed  t o  a u n i t  of inc ident  f l u x  i n t e n s i t y .  
r e s u l t i n g  from the  p a r t i c l e  pene t ra t ing  i t  , w i l l  be  comprised of the  s c a t t e r i n g  
and the  absorption. We thus have the  following f o r  t h e  a t tenuat ion  c o e f f i c i e n t  
k: 

p e r  u n i t  of t i m e  through a l a rge  sphere,  whose center  coincides  wi th  the  - /54 

W e  s h a l l  designate  t h i s  

It has the  dimensional i ty  of area, 

i n  a s i m i l a r  way. This i s  t h e  t o t a l  
S 

The t o t a l  f l u x  a t tenuat ion ,  

k . =  ka + ks (2.46) 

The f i e l d  outs ide  of t h e  p a r t i c l e  (E, H) i s  a superpos i t ion  of t he  inc ident  
f i e l d  (EO, Ho) and t h e d i f f r a c t e d  f i e l d  (Ea, Ha):  

E-@+E*; H s H O + H " .  (2.47) 

The mean vec tor  of t h e  energy f l u x  TI is determined by the  formula (1.7). 
I n  view of (2.47), i t  may be  represented i n  t h e  following form 

n = no+ no+ n', 
where TIo i s  t h e  f l u x  of t h e  inc ident  f i e l d ;  IIa - -d i f f rac ted  f i e l d ;  and TI' -- 
t h e  f l u x  produced by in t e r f e rence  of inc ident  and s c a t t e r e d  rad ia t ion .  
t o t a l  f l ux ,  d i r ec t ed  outwards through t h e  l a r g e  sphere,  w i l l  be  t h e  i n t e g r a l  of 
t he  r a d i a l  component TI with  respec t  t o  t h e  sphere.  
statements presented previously regarding t h e  c o e f f i c i e n t s  of absorpt ion and 
s c a t t e r i n g ,  we have 

The 

I n  accordance with the  
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Here 1 

angle d0 = s i n  0 d0 d$, a r2d0 -- element of c ros s  s e c t i o n  on t h e  sphere. 
of t h e  i n t e g r a l s  are taken over t h e  sphere. 

is t h e  i n t e n s i t y  of inc ident  r a d i a t i o n ;  d0 -- element of t h e  s o l i d  0 
All 

The f l u x  of inc ident  r a d i a t i o n  i s  constant  wi th  respec t  t o  d i r ec t ion .  
Therefore, its i n t e g r a l  over t h e  sphere equals  zero: 

.J l y f 9  dQ = 0. 

For ks and k = ks + k w e  thus obta in  

As e3 - Re 
a' 

[Ea, H5* 1, r* dP, 
f0 I' 
1 - A - 7; Re !& ( [EO, Ha*], + [E? HO*], ] r*dO - 

L e t  us i n v e s t i g a t e  t h e  i n t e g r a l  f o r  k . W e  have: 
S 

Po, H5' 1, - €ty" - qq*. 

(2.50) 

Subs t i tu t ing  t h e  expressions f o r  t he  f i e l d s  (2 .41 )  , performing i n t e g r a t i o n  
over 4 ,  and grouping t h e  terms i n  an appropriate  way, w e  ob ta in  t h e  double sum 
of t h e  following t h r e e  types of expressions: 

The sums w i l l  have a c m o n  f a c t o r  
1 CE; u 

7--=-. 

lo 8m0k: k: 

Both i n t e g r a l s  may be r e a d i l y  calculated.  
integrand i s  d(P(1) P(1)) , and t h e  funct ion P(1) P(1) equals zero i n  t h e  case 

9 = 0,  R .  I n  t h e  i n t e g r a l  (b) w e  may transform t h e  f i r s t  component i n t e g r a t i n g  
i t  by p a r t s :  

I n t e g r a l  (a) equals zero,  s i n c e  i t s  

E m  E m  

f d q )  dP$) 

0 

de de sin8de- 

The term outs ide  of t h e  i n t e g r a l  equals zero. By means of equation - I56  
( 2 . 3 3 )  f o r  conjugate Legendre polynomials, t h e  la t ter  i n t e g r a l  may be rewr i t ten  
as follows: 
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Subs t i tu t ing  the expression obtained i n  t h e  i n t e g r a l  (b), it may be  r ead i ly  
seen t h a t  i t  is now reduced t o  t h e  i n t e g r a l  over t h e  sphere of t h e  product of 
two d i f f e r e n t  spher ica l  funct ions.  

Based on t h e  theorem regarding or thogonal i ty  of these funct ions [see (Ref. 
4 0 ) ] ,  w e  f i n d  t h a t  t h e  i n t e g r a l  (b) equals zero i n  t h e  case R f m and 

2R2(Q + 1 1 2  
2R + 1 

i n  t h e  case R = m. 

Thus, our double sum with respec t  t o  m and R degenerates i n t o  an ordinary 
sum with respec t  t o  R. 

I f  w e  take i n t o  account t h e  common f a c t o r  ind ica ted  above, which is  located 
i n  f r o n t  of t h e  sum, w e  f i n a l l y  obtain 

m 

(2.51) 

L e t  us now c a l c u l a t e  t h e  a t t e n t u a t i o n  coe f f i c i en t .  
w e  have : 

I n  accordance wi th  (2.50) , 

1 -k=-Re  10 & { & @ ' - E " , & + € $ ~ - , ! $ f ~ )  radQ. 

0 0 0  
I n  order  t o  c a l c u l a t e  t h i s  i n t e g r a l ,  w e  must have t h e  expressions E 4 '  E o ,  H4' 

0 
H, expanded i n  t h e  same series as t h e  d i f f r a c t e d  f i e l d s .  By means of t h e  

p:tentials Uo and U: of t h e  plane wave and formulas (2.15) ,  w e  ob ta in  t h e  follow- 1 

For purposes of b r e v i t y ,  the following nota t ion  i s  introduced here: 
21+1 €0 q,-P-' - 
1 ( 1 + 1 )  * k T '  

Employing the formulas f o r  t h e  f i e l d s  and the i n t e g r a l s  ind ica ted  above of t h e  
angular funct ions w e  r e a d i l y  obta in  
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Replacing the  funct ions JI and JI' by t h e i r  asymptotic expressions (see R R 

and r e c a l l i n g  t h e  formula f o r  I w e  obtain 
0' 

L e t  us now introduce two sets of complex numbers i n t o  the  discussion:  

It may be r ead i ly  seen t h a t  t h e  expression i n  the  parentheses i s  

2:. J +  .;,I + 2,. &---2& 1 = 2 Rez,,, -2  i Im Z2J. 

When t h i s  expression i s  subs t i t u t ed  i n  the  formula f o r  (-k), the  term with 
z drops ou t ,  s i n c e  i t  i s  an imaginary number. 

2, R 
Thus, w e  ob ta in  t h e  following f o r  -k: 

o r  

(2.52) 

CHAPTER I11 - 159 

PARTIAL WAVES 

I n  accordance with the  fundamental formulas (2.41),  t h e  ca l cu la t ion  of d i f -  
f r ac t ed  f i e l d s  may be reduced t o  summation of t h e  f i e l d s  of p a r t i a l w a v e s .  
The purpose of t h i s  chapter is  t o  ind ica t e  t h e  formulas which are necessary f o r  
p r a c t i c a l  computations of p a r t i a l  waves and i n t e n s i t i e s .  These formulas re- 
present  a compulsory intermediate  l i n k  between the  general  r e l a t ionsh ips  of 
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Chapter I1 and d i f f e r e n t  s p e c i f i c  f o  
Chapters I V  - V I I .  

as, which we  de d and analyzed i n  

I n  add i t ion ,  t h i s  chapter w i l l  a l s o  be devot t o  d i f f e r e n t  system 
wr i t i ng  t h e  fundamental formulas, and we  s h a l l  po in t  out one general  e r r o r  which 
is usua l ly  permissible  i n  formulas f o r  i n t e n s i t i e s .  

5 1. Amplitudes of P a r t i a l  Waves 

W e  s h a l l  cal l  t h e  c o e f f i c i e n t s  c and b amplitudes of p a r t i a l  waves. R R 
These c o e f f i c i e n t s  may be  determined by means of c y l i n d r i c a l  funct ions with 
ha l f - in teger  ind ices .  
which we  f e e l  w i l l  be necessary a t  a later poin t .  

W e  s h a l l  present  some p rope r t i e s  of these  funct ions again,  

Along wi th  t h e  funct ions JI, and CR introduced previously,  w e  would a l s o  

l i k e  t o  poin t  out two o the r  funct ions x (2)  and n R ( z ) .  

may be determined by the  following equations 

A l l  of these  funct ions R 

The following r e l a t ionsh ips  hold between these  four  functions: /60 
(3.2) I 1 

1 

G (2) - % (4 + ixr (2); 9r (2) = [Cg (2) $- 11 (41; 

'Ir (4 - 9 b  (2) - i x l ( 4 ;  xc (2) = 21 [Lg (2) - ' I2  (2)j. 

c&; - c;*g = 1 

W e  should a l s o  note  t h a t  t he  Wronskian of t he  func t ions  JI, and CR equals 

i, i.e.,  the  following formula holds:  

(3.3) 

f o r  any 2. 

expression of these  func t ions ,  are as follows: 

The f i r s t  t h ree  funct ions JI xR and CR, and a l s o  the  general  

1 te,(z,=sfnz; %(z)= - cqs 2, 
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(3.5) 

(3 .6 )  

The expressions f o r  17 ( z )  may be  obtained from t h e  formulas f o r  GR(z) by R 
replacing t h e  s i g n  before  i. 

All four  func t ions  s a t i s f y  recursion formulas of t h e  following form: - 1 6 1  

h + l ( Z )  = 21+ 7 1 +I (4 -+J-l@). ( 3 . 7 )  

This expression must be  employed i n  our problem when ca lcu la t ing  c y l i n d r i c a l  
The der iva t ives  of a l l  fou r  funct ions may be expressed funct ions of high orders .  

i n  terms of t h e  funct ions themselves. The following formula holds f o r  a l l  t h e  
funct ions : 

1 *: (4 = 9'- 1 (4 - 4 J  (4. (3.8) 

The funct ion JI ( z )  and a l s o  + ' ( z )  may be  expanded i n  power series with R R 

(3 .9 )  

(- I)& ( f + 2 k f l )  z'?\ k 1 -k k l * ( l + l )  (T) (21t-3) ... (21+2k+l) 

Although these  expressions represent  t h e  func t ion  and i t s  der iva t ive  with 
respec t  t o  t h e  e n t i r e  plane of t h e  complex v a r i a b l e  z ,  they are only s u i t a b l e  
i n  p r a c t i c e  i n  t h e  case z << R. 
t h e  f i r s t  term i n  t h e  sums. W e  thus  obtain:  

I n  t h i s  case, w e  may confine ourselves t o  only 

( I  4- 1)zJ (3.10) 
z a + i  - (21 $. I)!! ; +; (4 - m. 

I n  a s i m i l a r  way, w e  have 
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R 

I I Cg(z) = 1 3 : . . (21- 1) Se-h;  

C; (2) == - 1 3 . . . (21- 111 9 i Ll+l, e-& 

W e  should a l s o  poin t  out the  formulas f o r  x ( z )  and x ' ( z ) :  R 

(3 * 11) 

I n  the  opposi te  case z >> R, t h e  following approximate formulas which are /62 
d i r e c t l y  obtained from ( 3 . 4 )  - (3 .6)  hold: 

L e t  us now tu rn  t o  the  amplitudes of p a r t i a l  waves. 

L e t  us i nves t iga t e  the  case of s m a l l  spheres (p < 1). W e  s h a l l  a l s o  assume 
t h a t  t he  complex r e f r a c t i v e  index m is small, s o  t h a t  Imp1 i s  a l s o  smaller than 
uni ty .  By means of formulas (3.5) and (3 .9)  , i n  t h i s  case we r ead i ly  obtain 

I (- t)'+'pzu+'e'P m S - 4  

( 3 . 1 4 )  
cz - P ( ( 2 f  - l)l!p 

Here r ,  q ,  p and t are the  following series: 

For s m a l l  p , replacing e i P  , r ,  q, p and t by 1, w e  have 

(3.15) 

(3 .16)  
When computing bE, we must take  the  f a c t  i n t o  account t h a t  

W e  thus  obta in  

(3.17') 
pX+D 

(my-1). 4 - (- ly ( I  + 1) (ZI + 1) (2f + 3) [(21 - 1)llp 

I n  the  case of s m a l l  p ,  c1 -- t he  amplitude of t he  f i r s t  e l e c t r i c  p a r t i a l  /63 
o s c i l l a t i o n  -- plays the main ro l e .  
f i r s t  o s c i l l a t i o n  w a s  s tud ied  by Rayleigh. 
W e  s h a l l  d i scuss  t h i s  a t  a later point .  
i n  v i e w  of t h e  f a c t  t h a t  t he  f i r s t  two expansion terms eip coincide with the  

The s c a t t e r i n g  of l i g h t  caused by t h i s  
It is c a l l e d  Rayleigh sca t t e r ing .  

W e  would a l s o  l i k e  t o  poin t  out  t h a t ,  
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f i r s t  two expansion terms p and t ,  t 
and (3.17) have t h e  order  p2. 

W e  s h a l l  now i n d i c a t e  t 
the  case of l a r g e  p a r t i c l e s  
s t i t u t i n g  them i n  cR and bR,  we  ob ta  

are v a l i d  i n  t h e  case p >> R: 

sin(p - ~ < ) c o s ( m p - ~ ~ ) - m  eor(p-~;)sin(mg--~+) 
-- 

x e+ cos(mp-l;)+Im91n(m:.- I ;) 
(3.18) 

It must be  noted t h a t  t H e  coe f f i c i en t s  cR and b o s c i l l a t e  with an increase R 
2(R + 1 )  m f  1 i n  R ,  and t h e i r  modulus is  thus less than 

+ 1) I -4 
For l a r g e  R ,  t h e  o s c i l l a t i o n  amplitude decreases as l / R .  

The answer t o  t h i s  quest ion cannot be obtained from formulas 
Up t o  what numbers 

does this occur? 
(3.18), 
c o e f f i c i e n t s  can be obtained i f  we  employ the  asymptotic formulas of Debye 
[see (Ref. 33)] f o r  c y l i n d r i c a l  funct ions.  
depending on which of 

s i n c e  they are only v a l i d  up t o  R << p .  More general  formulas f o r  t h e  

These formulas have a d i f f e r e n t  form, 
e following i n e q u a l i t i e s  holds  

1 
a) J+u<P o r  (b) C + i > p .  

W e  should n o t e t h a t , i f  t hese  i n e q u a l i t i e s  are replaced by s t rong  in- - / 6 4  
e q u a l i t i e s ,  t h e  Debye formulas change i n t o  t h e  customary asymptotic formulas. 

In  case (a) w e  have: 

(3.19) 

11 
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I n  view of t h e  f a c t  t h a t  

a real angle  ly ing  between 0 and JC 2 -  

I n  t h e  case (b): 

(3.21) 

(3.22) 

-+ 5 30 (with respec t  t o  the  (4) This means t h a t  T~ = - i 0 ,  where 0 = arch 

p o s i t i v e  root  of t h e  func t ion  a rch  x). 
The intermediate  region,  when (R + 1) is on the  order  of p ,  may be  o m i t t e d m  2 

i n  t he  f i r s t  approximation1. 

L e t  us now tu rn  t o  the  formulas f o r  amplitudes. The case of r e a l m  i s  of 
b a s i c  i n t e r e s t ,  s i n c e  the  case of l a r g e  t ransparent  spheres e n t a i l s  
d i f f i c u l t y  when being s tudied .  
both arguments of t h e  c y l i n d r i c a l  funct ions are real. 

the  g r e a t e s t  
I n  t h i s  case (which we are discussing he re ) ,  

It is advantageous t o  d iv ide  the e n t i r e  region i n  which 9. changes i n t o  the  
following th ree  groups: 

1) I+f<P<rnP, 

2) p<r++<mp,  

3) P<rnP<lS+ .  
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L e t  us in t roduce  t h e  two angles  T and T 0 l by means of t h e  following equa- 

t i ons  : 
1 

I++ ‘+v 
cos?@--; cos51==-. 

P mP 
(3.23) 

In t h e  f i r s t  group, both angles  are real; i n  t h e  t h i r d  group, both angles 
are imaginary and negative.  

T i s  real. 

I n  the  second group, T~ i s  imaginary negat ive,  and 

1 

W e  s h a l l  a l s o  employ the  following nota t ion  

fo=sln~,,--cOs~,; ft=dnr1-tlcosr,. (3.24) 

Subs t i tu t ing  the  Debye expressions f o r  c y l i n d r i c a l  funct ions i n  the  formula f o r  
c w e  obtain the  th ree  following formulas f o r  cR i n  d i f f e r e n t  regions [ t h e  

f a c t o r  ( -1) i 
/66 R ’  2R is omitted temporarily]:  R ( R  + 1) 

1) ea= 9 
4 (Pru- ;) 

1) sinq - cos (mp fi + 5) - 
-r, 

-msinr,e 

--+ 
i 2) cI = - - {~r i  - 2 

--* 

i ,, ipf, sin 71 - m sin xQ 3) q=-- 2 

R’ 

sin rl+ rn sin < * 
Similar  expressions are obtained f o r  b In view of the  f a c t  t h a t  ‘c0 and 

are real i n  the  f i r s t  group, t he  amplitudes i n  T 

t h e  f i r s t  group are f i n i t e  and are approximately on t he  order of 

the  second group, w e  have 

and, consequently, f o  and f 
22 f 1 In 1 1 

a ( &  + 1) 
cosr,,=ch6; s i n t o = -  ish,fj; 

if,=-Ch e(fJ - the) = - ’1 <O, 

Thus, i n  t h e  second group the  amplitudes contain an exponent ia l ly  decreasing 
f a c t o r  e2ipfo = e-pn and, consequently, they are vanishingly small (p 
s i t u a t i o n  is the  s a m e  i n  the  t h i r d  group. 
important conclusion: f o r  l a rge  p t h e  number of terms which must be  re ta ined  
i n  the  sum 

1 R + 7 > p are negl ig ib ly  s m a l l .  

1). The 
W e  thus  a r r i v e  a t  t he  following 

of Chapter I1 have the  order  of magnitude p .  The t e r m s  with 

46 



Therefore,  i n  t he  f u t u r e  i n  t h e  t i o n s  w e  s h a l l  
only inves t iga t e  terms included i n  t h  

The formula 

s u i t a b l y  transformed, i f  we change everywhere from tr igonometr ic  func t ions  
(containing p )  t o  exponential  funct ions.  

given above f o r  c (and t h e  s i m i l a r  formula f o r  b ) may be - R R 

L e t  us introduce the  following nota t ion  

(3 .25)  

(3 .26)  

These formulas are q u i t e  s u i t a b l e  f o r  amplitudes i n  the  case p >> 1. 

W e  s h a l l  analyze them a t  a later poin t .  W e  would l i k e  t o  poin t  out he re  
t h a t  €or l a rge  p t h e  expression within the parentheses i s  the sum of uni ty  and 
a rap id ly  o s c i l l a t i n g  term. 

These formulas acquire  a p a r t i c u l a r l y  simple form i n  the  case m + ~0 (abso- 
l u t e l y  r e f l e c t i n g  p a r t i c l e s ) .  Here E~ = -1, = 1, and cR and b w i l l  be: 

2 f + 1  1 
R 

(3 .27)  I { 1 + i&f I ] ; 

2 f f l  1 - ( - 1 jl i - - ( 1 - i&f' 
t ( I+J) 2 

§ 2.  Angular Functions. Convergence 

CZ = ( - 1Y t 1(1+1) -ij- 

1- 6l 

The s p a t i a l  d i s t r i b u t i o n  of s c a t t e r e d  l i g h t  is  determined by the  angular 
funct ions Q (9) and S,(9). W e  should recall  R t h a t  t hese  funct ions are (x-= cos 6): 

(3 .28)  

W e  would l i k e  t o  po in t  c e r t a i n  p rope r t i e s  of these  funct ions.  All of - /68 
these  p rope r t i e s  follow d i r e c t l y  from the  Legendre polynomial p rope r t i e s  and 
the  p rope r t i e s  of the  assoc ia ted  polynomials [see (Ref. 4011. 

The f i r s t  few funct ions Q, a 
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( 3 . 3 0 )  

When t h e  s ign  f o r  x is changed, t he  funct ions Q (x) and S (xi a l s o  change 

s igna  according t o  the  following formulas 
R R .  

QI( - X) = ( 1 r-' Qt (x); Si ( - X )  = ( - 1)' Si (x).  ( 3 . 3 1 )  

The following recurs ion  r e l a t ionsh ip  holds f o r  t he  funct ion Q,(x): 
21- 1 I 

Q ~ ( x ) =  -- 1-1 ~ Q t - 1 -  --- 1-1 Qi-2- 

I n  the  computations, i t  is  important t h a t  a l l  t h e  funct ions Q are known 

( 3 . 3 2 )  

R 
( fo r  a given angle) f o r  d i f f e r e n t  R from R = 1 t o  R of t he  order  p .  

By means of r e l a t ionsh ip  ( 3 . 3 2 ) ,  w e  may successively ca l cu la t e  a l l  t he  
funct ions Q (x )wi thany  number R f o r  given x ,  i f  t he  f i r s t  few funct ions are 

known. 
formulas ( 3 . 2 9 ) .  A s  f o r  t he  funct ions S (x) ,  they may be expressed i n  

terms of Q,(x) . 

R 
Functions with s m a l l  numbers may be computed d i r e c t l y  according t o  

R 
The following formula holds:  

( 3 . 3 3 )  

According t o  t h i s  formula, a f t e r  a l l  the  r e q u i s i t e  Q are computed, a l l  
?r 

R 
S may be computed. 

assume a p a r t i c u l a r l y  simple form. 

The angular funct ions f o r  t h e  angles 9 = 0 and 9 = - R 2 

W e  may obta in  t h e  expression Q (1) i f  w e  recall t h a t  t h e  Legendre poly- R 
nomials represent  t he  so lu t ion  of the  following d i f f e r e n t i a l  equation: - 169 

(1 -x19yf-2 xu'+ [ ( I +  1)y = 0. 
I n  the  case x = 1, w e  obta in  

Since y(1)  = 1, f o r  y '  = Q, w e  s h a l l  have 

t u +  1) Qdl) -g-* 

W e  ob ta in  t h e  following from formula ( 3 . 3 3 )  f o r  S : 
R 

S $ ( l ) = ~ q  =Q(l). ( 3 . 3 4 )  
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The expression f o r  Q,(O) may be  r ead i ly  found from the  genera l  expressions 

f o r  t h e  Legendre polynomials ( 2 . 2 0 )  : 

( 3 . 3 5 )  

I n  order  t o  perform the  ca l cu la t ions ,  it is advantageous t o  keep t h e  f a c t  
i n  mind t h a t  

( 3 . 3 6 )  

and t h e  f i r s t  Q (0) may be  computed d i r e c t l y  according t o  ( 3 . 2 9 ) .  With respec t  

t o  SR(0),  they may be  ca lcu la ted  most simply according t o  t h e  following formula 
R 

SZ (O)=-(f+ 1) Qg-l(O). ( 3 . 3 7 )  

All t h e  funct ions wi th  odd numbers equal  zero. 

I n  the  case of l a rge  E, f o r  Q and S we may f ind  t h e  asymptotic R R 
formulas, employing t h e  customary asymptotic formulas f o r  Legendre polynomials. 
However, these  formulas are not  very s u i t a b l e ,  s i n c e  they l o s e  any meaning i n  
the  case 0 = 0 o r  T. 
Legendre polynomials w a s  given by V. A. Fok (Ref. 4 2 ) :  

An asymptotic formula which is much more s u i t a b l e  f o r  

( 3 . 3 8 )  

(Jo -- zero Bessel funct ion) .  

s 
This formula holds  f o r  a l l  0 5 - -  0 “ 7  . We may read i ly  obta in  t h e  following 

asymptotic expression from ( 3 . 3 8 )  f o r  Q,(0) and SR(0): - / 7 0  

Here J i s  the  f i r s t  Bessel funct ion,  and y = (Q + $10: 1 

( 3 . 3 9 )  

( 3 . 4 0 )  

When the  Bessel func t ions  are replaced by t h e i r  asymptotic expressions,  
w e  s h a l l  have the  same expressions which are obtained from the  customary asymp- 
t o t i c  formulas f o r  Legendre polynomials. 

One important f a c t  must be  s t r e s s e d  here.  In t h e  case o f  l a r g e  R (and 
l a rge  y) Q, has the  order  $112, and S 

R 3 I 2 ,  

asymptotic ca lcu la t ions .  

is one order  of magnitude higher ,  i .e.,  R 
This means t h a t  we  may d is regard  Q, as compared with S, i n  t h e  case of 

Employing the  recurs ion  formulas and r u l e s  ind ica ted  above, w e  compiled a 
t a b l e  of angular funct ions Q, f o r  t h i r t e e n  angles: 0 = 0, 1, 2 ,  5, 10, and every 

10 t o  90 f o r  R from 1 t o  80. W e  s h a l l  g ive  t h i s  t a b l e  i n  t h e  appendix. It 
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considerably f a c i l i t a t e s  he computation of 
with p 2 8 0 .  

. 

A ca lcu la t ion  based on the  recursion f ormulas 
the  "reference system" of values  is no t  f i r s t  comp 
which is not  a recursion formula. 
The values  of Q 

compared with the  "reference" values.  

of the  Q, according t o  formula ( 3 . 3 3 ) .  

Formulas ( 3 . 3 1 )  make i t  poss ib le  t o  r e w r i t e  t he  fundamental formulas f o r  
the  f i e l d s  E0 and E 

s c a t t e r i n g  angle B i n t o  the  discussion. This angle,  which may be read off  from 
the  d i r ec t ion  i n  which l i g h t  i s  propagated, and not  from the  d i r ec t ion  toward 
the  l i g h t  source,  as 0 ,  i s  r e l a t e d  with 0 by t h e  following r e l a t ionsh ip  

l y  impossible i f  
d based on any formula 

For t h i s  purpose, we employed formula ( 3 . 3 9 ) .  
w e r e  computed according t o  the  recurs ion  formula and w e r e  R 

The funct ions SR were computed i n  t e r m s  

i n  a more advantageous form. L e t  us introduce the  
4 

p -  iaoo-e. ( 3 . 4 1 )  

L e t  us a l so  introduce the  amplitudes c* and b* which w e r e  determined as 
R R 

t ( 3 . 4 2 )  

W e  should poin t  out  t h a t  the  change from the  angle  0 t o  t he  angle  B - / 7 1  
i nd ica t e s  a r eve r sa l  i n  the  u n i t  vec tor  i n  the  sphe r i ca l  coordinate  system 
( i O  = - i&. 

(from r i g h t  t o  l e f t ) ,  w e  must a l s o  change the  d i r e c t i o n  i n  which the  angle 
+(io = - i + , )  i s  measured. 

j e c t i o n s  of the  f i e l d s  (E = -E E + I  = -E+>. B 

I n  order  t h a t  there  may not  be a change i n  the  coordinate  system 

This a l s o  means a change i n  the  s igns  i n  the  pro- 

Designating the  angular funct ions of 8 by an a s t e r i s k ,  we ob ta in  

( 3 . 4 3 )  

The angle 6 is s u i t a b l e  than 0 ,  and we  s h a l l  f requent ly  rep lace  i t  by 
0 according t o  ( 3 . 4 1 ) .  A s  f o r  t he  angle  c $ ' ( + '  = 360 - +), its sub- 
s t i t u t i o n  by + i s  unimportant. Therefore,  w e  s h a l l  usual ly  omit the primes. 

l u t i o n  of ( 2 . 3 8 )  . 41 )  may be repre  d i n  the  form of an 
s c i l l a t o r y  equation. 
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Consequently, t h e  important problem of the  convergence of t hese  series confronts 
us. 
en t .  

It may b e  shown t h a t  a l l  of our series are absolu te ly  and uniformly converg- 
W e  s h a l l  i l lus t ra te  t h e  absolu te  convergence of t h e  series. 

The convergence of a series of elementary so lu t ions  i n  t h e  case of very 
slow o s c i l l a t i o n s  (k = 0 ) ,  which provide a s o l u t i o n  of t h e  Laplace equation, 
may be  r e a d i l y  shown, i f  w e  take t h e  f a c t  i n t o  account t h a t  t hese  series d i f f e r  
t o  an i n s i g n i f i c a n t  ex ten t  from t h e  series f o r  t h e  generating funct ion of t h e  
Legendre polynomials [see (Ref. 40),  page 6121. 

The convergence of our series may be determined by est imat ing the term9 i n  
t h i s  series which have extremely high numbers. 
numbers are much g r e a t e r  than the  arguments of a l l  t he  c y l i n d r i c a l  funct ions 
contained i n  the s o l u t i o n ,  and w e  s h a l l  employ t h e  formulas given i n  § 1 and 2 
t o  determine these  functions.  

W e  s h a l l  assume t h a t  these 

I n  analyzing t h e  convergence of t h e  so lu t ion ,  w e  must start wi th  t h e  fun- 
damental formulas f o r  t h e  f i e l d s  (o r  po ten t i a l s ) .  W e  cannot employ formulas 
(2.41), s i n c e  they w e r e  obtained upon the assumption t h a t  k r >> R, whereas w e  

are now deal ing with an inverse  inequal i ty .  
/72 a 

For example, l e t  us i n v e s t i g a t e  0 -- t h e  magnetic f i e l d  component -- and 
l e t  us determine t h e  term containing t h e  Rth p a r t i a l  e lectr ic  wave i n  i t .  

W e  s a w  previously t h a t  f o r  any 8 

and from § 1 w e  have: 

Consequently, i t  may be s t a t e d  t h a t  t h e  series converges f o r  e l e c t r i c  
o s c i l l a t i o n s  i n  H j u s t  l i k e  a power series of t h e  following type 0 

where 

.I 
1.3 ...(Z+ 1) 

The s i t u a t i o n  is similar i n  o the r  cases. 

§ 3. Two Methods f o r  Writing t h e  Fundamental Formulas 

I n  d i f f e r e n t  s t u d i e s  on l i g h t  s c a t t e r i n g ,  t h e  authors have frequent ly  
employed d i f f e r e n t  methods f o r  w r i t i n g  t h e  fundamental formulas. 
formulas are q u i t e  cumbersome, and contain a l a r g e  number of intermediate  
nota t ions ,  t h i s  f a c t  f requent ly  complicates t h e  use of t h e  i n v e s t i g a t i o n  r e s u l t s .  
W e  s h a l l  now discuss  t h i s  problem. 

Since t h e  

Bas ica l ly ,  two systems of no ta t ion  f o r  the s p e c i a l  funct ions of t h e  problem 
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are employed: 
no ta t ion .1  W e  have employed t h e  l a t te r .  t 

t he  s p e c i a l  no ta t ion  introduced by Mie, and the  customary 

The angles designat ing the  d i r e c t i o n  from t h e  center  of the  p a r t i c l e  t o  /73 
t he  observation po in t  are a l s o  se l ec t ed  i n  a d i f f e r e n t  way. 
f o r  t h i s  purpose by Mie are no t  s u i t a b l e ,  s ince  the  sphe r i ca l  f i e l d  components, 
according t o  M i e ,  are not  components across  and along the  plane of v i s ion .  
order  t o  make a comparison with experiment, i t  i s  usua l ly  necessary t o  know 
these  components exact ly .  
t he  r e q u i s i t e  f i e l d  components are obtained d i r e c t l y .  

The angles  se l ec t ed  

I n  

I n  the  coordinate  system 0 and + which w e  s e l ec t ed ,  

For purposes of o r i en ta t ion  i n  l i t e r a t u r e  on t h e  problem, w e  s h a l l  i n d i c a t e  
the  formulas f o r  t r a n s i t i o n  between both nota t ion  methods [ f o r  g rea t e r  d e t a i l ,  
see (Ref. 43)] .  

We s h a l l  s ta r t  with the  formulas f o r  0 and + -- t he  electric f i e l d  components 
( i n  the  d i f f r a c t e d  wave) obtained by M i e .  

A t  a s u f f i c i e n t l y  l a rge  d is tance  from the  p a r t i c l e ,  these  formulas may be 
wr i t t en  as follows (Ref. 32),  formulas (52) and (19): 

(3.44) 

Thus, i n  order  t o  avoid confusion when making a comparison with our nota t ion ,  
w e  have used primes t o  designate  the  angles 8 and 4 used by M i e . 2  

The q u a n t i t i e s  contained i n  the  formulas (3.44) have t h e  following meaning: 

v -- number of t h e  p a r t i a l  wave, A ’  = - 2n -- wave length of inc ident  l i g h t  i n  

the  ex te rna l  medium. 
ka 

The c o e f f i c i e n t s  av and p, charac te r ize  the  e x c i t a t i o n  i n t e n s i t y  of t he  

(l)It i s  sometimes s t a t e d  t h a t  M i e  f i r s t  provided the  so lu t ion  of the  
problem f o r  any p .  However, i n  1899 the  complete so lu t ion  of the  problem w a s  
published by Love [he assumed t h a t  cr = 0 (Ref. 31)]. The b rev i ty  of t h e  
discussion and t h e  l ack  of phys ica l  assumptions i n  h i s  study are apparently the  
reasons why t h i s  s tudy is comparatively l i t t l e  known. 
w a s  completely solved i n  1893 by Thomson (Ref. 49). This case is s i g n i f i c a n t l y  
simpler than t h e  case examined by Love and Mie. 

For m = m ,  t he  problem 

(2)The formulas which w e  have w r i t t e n  d i f f e r  from t h e  s i m i l a r  formulas i n  
t h e  study by M i e  [formulas (77) on page 4091 by t h e  f a c t o r  (- i ) .  
r ead i ly  seen,  however, t h a t  formula (77) of Mie is inaccura te  by making a 
comparison with the  i n i t i a l  formulas (52). 

It may be  
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corresponding p a r t i a l  wave. 
funct ions Iv(x)  and Kv(x) introduced by Mie ( the formulas ( 5 3 ) ,  ( 5 4 )  and ( 5 5 )  

They may be expressed by means of the  s p e c i a l  
/74 

of Mie): 

( 3 . 4 5 )  

2 1 ~ m  a 

x 
W e  have replaced the  nota t ion  of M i e  f o r  a = kaa by our 

nota t ion  p ,  2 -- by 

series f o r  t h e  funct ions I (x) and K (x) of M i e  [formulas ( 2 7 )  and ( 2 9 ) ]  with 

the  corresponding expressions f o r  c y l i n d r i c a l  funct ions with a ha l f - in t eg ra l  
index (see § l), w e  may r ead i ly  see t h a t  

m y  and k . a  -- by means of mp. I f  w e  compare the  ma 1 

V V 

Substituting.relationships ( 3 . 4 5 * )  i n  t he  formulas f o r  a and p and 
V V '  

comparing the  expressions thus obtained with the  formulas f o r  e and bvy  w e  
V 

r ead i ly  obta in  

I a , ~ v ( V + l ) i * c " = v ( v +  l)cv; 
p," -v(. + 1) iYBv = v (v + 1) b,. ( 3 . 4 6 )  

I n  order  t o  e s t a b l i s h  t h e  r e l a t ionsh ip  between t h e  angles of M i e  8' and $'  
and our angles  8 and 4, l e t  us t u rn  t o  Figure 8. W e  s e l ec t ed  t h e  axes x, y ,  z 
(1, 2 ,  3 )  i n  t he  same way as M i e  [see Figure 1 i n  (Ref. 3211 ,  namely: a sca t t e red  
wave is  d i r ec t ed  along the  negat ive axis 3 and is polar ized  i n  the  d i r e c t i o n  of 
t he  axis 1. L e t  us int roduce t h e  nota t ion  

t -COSeE-COSp. 

It may be  r ead i ly  seen t h a t  t he  following formulas hold 
COS 9 = sin 0' sin 'p' ~1 o; 

sin 8 cos 'p = cos 6'; 
sin 9 sin 'p = sin 9' cos 7'. 

contained i n  formulas ( 3 . 4 4 1 ,  are as follows: 

The funct ions Pv and Rv, whose de r iva t ives  with respect t o  t h e  angles are /75 

P, (e,<) = II, (0) cos e8; 
R,(e', cp') = II, (0) sin  cos 4. 

The quant i ty  H (x) is t h e  s p e c i a l  funct ion introduced by M i e .  Comparing 

the  d i f f e r e n t i a l  equation f o r  t he  funct ions RV(x), and a l s o  the  e x p l i c i t  form 

of these  funct ions of M i e  [formulas ( 3 4 )  and ( 3 8 )  i n  (Ref. 3211 , with the  

V 

5 3  



equation and the  e x p l i c i t  expressions f o r  the  

r ead i ly  obtain:  d 

e 

a, (4 = P&). 

c- 

The r e l a t ionsh ips  given above provide 
the  meaning of a l l  t h e  q u a n t i t i e s  con- 
ta ined i n  the  formulas of M i e  f o r  t he  
f i e l d s  [formulas ( 3 . 4 4 )  I .  

I n  view of the  method se l ec t ed  by 

and Eel  are not  
M i e  t o  measure t h e  angles 9 '  and e ' ,  
t he  components E 

components across  (E ) and around (E ) 9 9 
of the  plane of v i s ion .  However, t hese  
components can be determined by means 
of E and E 

4 '  

0" 9 '  
I n  a c t u a l i t y ,  l e t  i and ig, be /76 9 

t he  u n i t  vec tors  with respec t  t o  the  
cu rv i l i nea r  axes 4' and 0 '  a t  the  
observation point .  I n  addi t ion ,  l e t  
i and i be the  u n i t  vec tors  across  

and along t h e  plane of v i s ion  a t  t h i s  

Figure 8. Relat ionship Between Angles 
Selected by M i e  and our Angles 9 9 

- 

same po in t ,  and le t  i i and i be the  un i t  vec tors  along the  x, y, z axes.  x '  Y z 

Since w e  have 

E = E&. +- € e * i q r ,  

w e  then have 

E, = (E, $1 = E?' (i,t, $1 + €8, (io,, $1, 
E,=(E, +=E&,, re>+E,l (io,, le). 

The vec tors  i and i may be r ead i ly  determined from the  following con- 
9 9 

s ide ra t ions .  L e t  R be t h e  u n i t  vec tor  i n  the  d i r e c t i o n  of the  observation 0 
poin t .  The vec tor  ig lies  i n  the  plane (Ro, iz). I n  addi t ion ,  i t  may be  

r ead i ly  shown t h a t  
1 ?,=-- ,be 4+ctg9 * %  

t - ~ % * f e i = - [ 4 9 t l ~ .  1 

I f  w e  write out  t he  rec tangular  components of t he  vec tors  i $ I Y  i g * 9  i 9 9  

i w e  ob ta in  the  following formulas 
9' 
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Employing these  r e l a t i o n s h i p s ,  expanding t h e  angular funct ions i n  formulas 
( 3 . 4 4 ) ,  and replacing t h e  angles 6 '  and 4 '  by t h e  angles  0 and 
t h e  following formula f o r  Ee: 

4 ,  we obtain 

0: I n  prec ise ly  t h e  same way, w e  ob ta in  the expression f o r  E 

(3.47) 

( 3 . 4 8 )  

Formulas (3 .47)  and (3 .48 )  give t h e  f i e l d  components along and across t h e  
plane of v i s ion .  I f  w e  now note  t h a t  

(3 .49 )  

w e  f i n d  t h a t  t h e  expressions f o r  Eo and E 

of M i e  coincide exac t ly  wi th  t h e  formulas €or E6 and E 

previously [formulas (2.4 1) ] . 
which w e  obtained from t h e  formulas 4J 

indicated by us 
4 

Employing formulas (3 .46)  , w e  may now w r i t e  t h e  expressions f o r  t h e  co- 
e f f i c i e n t s  of s c a t t e r i n g  and absorpt ion according t o  M i e .  
t h e  formula ( 2 . 5 1 ) ,  f o r  k we obtain:  

I n  accordance wi th  

m 
P 

(3 .50 )  

For k we  ob ta in  t h e  following, i n  accordance with ( 2 . 5 2 ) :  

(3 .51 )  
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We have already noted previously that the complete solution of the problem 
for any p (for (r = 0) was given by Love nine years before Mie. 
was then employed by Rayleigh (Ref. 3 4 ) ,  who tabulated the intensities Is and 
I for m = 1.5 and p = 1; 1.5;  1 .75;  2 .0;  2.25. The Love-Rayleigh formulas 
were also employed by Ray (Ref. 44)  (p = 1 2 ;  m = 1.33).  We shall indicate the 
relationship between our notation and the notation of Rayleigh. 
relationships hold : 

His solution 

P 

The following /78 

a = R ,  p = q ,  m = v / K ,  - I  

(3 .52)  

1 
§ 4 .  One Error in the Formulas for Intensities 

When the intensities are tabulated, one usually starts with the formulas 
of I1 and I 2  indicated by Mie [see (Ref. 3 2 ) ,  page 4271: 

(3 .53)  

These formulas gtve the intensities I and I for a scattered bundle, 1 2 
under the assumption that a bundle of natural (unpolarized) light falls on a 
particle; the intensity of this light equals unity. 
thus included and their relationship with our notation is given in § 3 .  

The error, which we mentioned, consists of the fact that formulas (3 .53)  
are invalid -- the factor ' / 2  is omitted in them. 
leads to incorrect values for I ( B ) ,  but the form of the scattering indacitrix 
does not change (all the radius vectors are extended by a factor of two). 
error has no influence upon the degree of polarization of scattered light. 
However, it is important, for example, when making an absolute comparison of 
the results derived from tabulating the intensities with experiment, or for 
computing the scattering coefficient based on the tabulated intensities. 

The meaning of the quantities 

We should note that this 

This 

The inaccuracy of formulas (3 .53 )  may be shown by the following three 

(a) The formulas (3 .53)  for intensity during scattering of natural light 

179 - independent methods. 

were obtained by Mie from the formulas for scattering intensity of linearly 
polarized light [formulas ( 7 8 )  on page 410 in (Ref. 3231. Changing from 
linearly polarized 'light to natural light, Mie did not average over the different 
lWe shall follow our studies here (Ref. 4 3 ) ,  1946,  and (Ref. 4 6 ) .  
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or i en ta t ions  of t h e  e l e c t r i c  vector .  
be represented as the  combination of two l i n e a r l y  polar ized  (perpendicular ly  
t o  each o ther )  components. and I2 f o r  each of t he  

components, M i e  obtained the  formulas (3.53) f o r  t he  q u a n t i t i e s  I1 and I2 f o r  

the  e n t i r e  bundle. Since t h e  i n i t i a l  formulas of M i e  correspond t o  the  case 
when each of the  l i n e a r l y  polar ized  components has an i n t e n s i t y  equal l ing  uni ty ,  
t he  t o t a l  i n t e n s i t y  of the  inc ident  bundle equals two. When making a conversion 
t o  u n i t  i n t e n s i t y  of the  inc ident  bundle, w e  must thus d iv ide  t h e  i n t e n s i t i e s  
obtained from formulas (3.53) by 2. 

H e  simply assumed t h a t  n a t u r a l  l i g h t  may 

Combining the i n t e n s i t i e s  I 1 

(b) The o ther  method f o r  demonstrating the  inaccuracy of formulas (3.53) 
i s  as follows. One changes from the  formulas of M i e ,  obtained f o r  t he  f i e l d s  
E and E when l i n e a r l y  polar ized l i g h t  is sca t t e red ,  t o  the  s c a t t e r i n g  of 

n a t u r a l  l i g h t ,  by averaging over t h e  po la r i za t ion  d i rec t ions .  
e 4 

W e  ca lcu la ted  these  formulas above [see formulas (3.47) - (3.4811. 
Changing from the  f i e l d s  t o  the  i n t e n s i t i e s  (we s h a l l  designate  them here  by 
primes),  w e  ob ta in  

a 1; =sing TI*;  I: = cos ?I.. 

I f  w e  now wish t o  change t o  n a t u r a l  l i g h t ,  w e  must average over a l l  poss ib le  
= d i rec t ions  of t he  e l e c t r i c  vec tor ,  i .e . ,  over the  angle  @. 

= 1 , w e  then have 
Since -= 

2 

(c)  The s implest  method of demonstrating t h e  incor rec tness  of formulas 
(3.53) cons i s t s  of comparing the  numerical values obtained by these  formulas f o r  
t he  case of s m a l l  p a r t i c l e s  with t h e  numerical values  which are given by the  
theory f o r  extremely s m a l l  p a r t i c l e s  ( the  case of Rayleigh). 

/80 

For example, l e t  

according t o  formulas 

us t u rn  t o  the  numerical values  which are obtained 

(3.53) f o r  t h e  quan t i t i e s  i = - i n  t h e  case 4a2r2 I 
1 9 2  192 

n = 1.25 and p = 0.4. These values  w e r e  obtained by Bl i imer  [see (Ref. 5611. 
L e t  us i nves t iga t e  t h e  case of foward s c a t t e r i n g  
Rayleigh formula, w e  ob ta in  

( 8  = 0 ) .  According t o  t h e  

t, = fn = 51,06 - lo-', 

while t h e  following i s  contained i n  t h e  B l i i m e r  t ab l e :  

il - ip= 107 - 10-0, 

i .e. ,  t h e  quant i ty  is approximately t w i c e  as large.  The devia t ion  of ha l f  of 
t he  B l i i m e r  value from the  Rayleigh by 5% is  due t o  the  f a c t  t h a t  t h e  p a r t i c l e  
cannot be regarded as s m a l l  i n  the  case p = 0.4. 

W e  would l i k e  t o  mention t h a t  the  e r r o r  mentioned here  w a s  a l s o  assumed i n  
the  book by M. Born (Ref. 38). Born changes from t h e  formulas f o r  s c a t t e r i n g  
of l i n e a r l y  polar ized l i g h t  t o  n a t u r a l  l i g h t ,  regarding it  as t h e  combination 
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of two mutually perpendicular components each of which has u n i t  i n t  
q u a n t i t i e s  I1 and I thus obtained are the  doubled i n t e n s i t i e s  of t 

and longi tudina l  components i n  a s c a t t e r e d  bundle, as w e  mentioned above, and 
not  t he  i n t e n s i t i e s  wr i t t en  inco r rec t ly  by Born. 

2 

I n  conclusion, w e  would l i k e  t o  add t h a t  t h e  e r r o r  inves t iga ted  he re  w a s  
assumed i n  the  new book by G. Gertner (Ref. 4 5 ) .  The formulas f o r  i n t e n s i t i e s ,  
which he writes out  on pages 27-28, are inco r rec t .  

CHAPTER I V  - 181 

SMALL PARTICLES 

§ 1. Rayleigh Formula 

The wellrknown Rayleigh formula [see (Ref. 4711 i s  obtained from the  
general  formulas of Chapter I1 under the  following two assumptions: 

(a)  The p a r t i c l e  must be s m a l l  compared with the  wave length p << 1. 

(b) The r e f r a c t i v e  index of i t s  substance must be s m a l l ,  s o  t h a t  l m l p  
must be less than uni ty .  

This second f a c t o r  i s  usua l ly  forgot ten ,  and i t  i s  s t a t e d  t h a t  the  s c a t t e r -  
ing  of a s m a l l  sphere i s  described by the  Rayleigh formula. 
erroneous. 
However, t he  reader  w i l l  see ( 9  2 and 3) t h a t  both the  s c a t t e r i n g  i n d i c a t r i x  
and a l l  the  remaining q u a n t i t i e s  descr ibing the  s c a t t e r i n g  w i l l  d i f f e r  e s s e n t i a l l y  
from the  Rayleigh q u a n t i t i e s ,  i f  condi t ion (b) i s  not  s a t i s f i e d .  I f  both con- 
d i t i o n s  hold ,  and t h i s  is the  case i n  the  majori ty  of cases i n  the v i s i b l e  
region (s ince  usual ly  Iml does not  exceed two he re ) ,  w e  can t u r n  t o  formulas 
(3.16) - (3.17) t o  compute cR and bR. 

have 

This statement i s  
I n  t h i s  chapter ,  w e  s h a l l  only discuss  s c a t t e r i n g  by s m a l l  spheres.  

I n  the  case of very s m a l l  p a r t i c l e s ,  w e  

The c o e f f i c i e n t  c1 i s  s i g n i f i c a n t l y  g rea t e r  than a l l  the  remaining values.  

Taking i n t o  account only t h i s  f i r s t  term and not ing t h a t  Q (e) = 1, and S ( 0 )  

= -cos 8 ,  w e  obta in  
1 1 

W e  s h a l l  show t h a t  the  f i e l d  obtained coincides exac t ly  with the  f i e l d  of the  /82 
o s c i l l a t i n g  dipole  a t  a l a rge  d is tance  from it  ( i n  the  wave zone). 
d ipo le  i s  exc i ted  i n  the  sphere by a constant  (along the  sphere) f i e l d ,  whose 

This 
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magnitude changes pe r iod ica l ly  with frequenc 

W e  should recall  t h a t  a sphere placed i 
dipole  moment i n  it 

where a is the  sphere rad ius ,  and m i s  t h e  complex r e f r a c t i v e  index of t he  sub- 
s t ance  of t he  sphere.  
a t  a l a rge  d i s t ance  from i t ,  as is known 

The f i e l d  of t h e  o s c i l l a t i n g  d ipole  w i l l  be as follows 

( 4 . 4 )  
E- - 8. a01 %- P 

e:r ' 
We must thus s u b s t i t u t e  t h e  d ipo le  moment not  a t  t h e  moment of t i m e  t under 

r 
0 considerat ion,  bu t  a t  the  t i m e  t '  = t - - 

a 

the  u n i t  vec tor  from the  center  of t he  d ipole  t o  the  observation po in t ,  and r 
is  t h e  d is tance  from the  center  of t h e  dipole  t o  the  observation point .  

(allowance f o r  delay).  H e r e  R i s  
C 

2 -w2 2 m 

Subs t i tu t ing  (4 .3)  i n  ( 4 . 4 )  and not ing t h a t  P = --w F, and - 2 = ka 3 w e  
r 

obtain:  
- 

a 

The pro jec t ions  of the  expression i n  the  bracke ts  upon the  sphe r i ca l  axes 
w i l l  be:  zero on t h e  ax is  R + s i n  4 -- on the  a x i s  4 ,  and cos 4 cos e on the  

axis 8. 
4 

ind ica ted  i n  formulas ( 4 . 2 ) .  

0' 
Consequently, the  components E and Ee exac t ly  coincide with those 

When the re  is an increase  i n  the  s i z e  of t he  p a r t i c l e ,  along with the  
electric d ipole  r ad ia t ion ,  allowance must be made f o r  the  d ipole  magnetic 
r ad ia t ion ,  quadrupole electric r ad ia t ion ,  etc. 

M i e  gave the  d i s t r i b u t i o n  of t he  electric fo rce  l i n e s  f o r  t h e  f i r s t  e igh t  
p a r t i a l  waves (Ref. 3 2 ) .  They are a l s o  given i n  t h e  bosk by Born (Ref. 38).  
For purposes of i l l u s t r a t f o n ,  w e  s h a l l  present  t h e  electric force  l i n e s  f o r  only 
the  e l e c t r i c  1 and t h e  magnetic 2 d ipoles  (Figure 9) .  

I n  1946, Ya. I. Frenkel'  advanced the  following clear explanat ion of - I 8 3  
these  p i c tu re s  of t h e  fo rce  l i n e s .  

I f  a << A, t he  f i e l d  is p r a c t i c a l l y  constant  over the  p a r t i c l e  length,  and 
changes only i n  t i m e .  This leads t o  a p i c t u r e  of t h e  force  l i n e s  which is 
shown i n  Figure 9 (1). When t h e  p a r t i c l e  dimensions fncrease ,  i t  cannot be 
assumed t h a t  t he  f i e l d  is constant  de along the  p a r t i c l e  , 
bu t  a t  each moment of t i m e  it m e rpos i t i on  of t he  constant  

The constant  f i e l d  i n  Figure 10. 
ementary f i e l d  i s  designated by 
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f 2 

Figure 9. Electric Force Lines of Figure 10. Diagram Showing the  Appear- 
the F i r s t  Two P a r t i a l  Waves ance of t he  Second P a r t i a l  Wave 

the  arrows. 
(1) , and t h e  supplementary f i e l d  produces a r i n g  cu r ren t  (magnetic dipole) .  
Its electric force  l i n e s  w i l l  be those shown i n  Figure 9 ( 2 ) .  

The constant  f i e l d  may b e  reduced t o  the  p i c t u r e  shown i n  Figure 9 

L e t  us now examine the  s c a t t e r i n g  ind ica t r ixes .  For s c a t t e r i n g  of l i n e a r l y  
polar ized  l i g h t ,  w e  ob ta in  the  following from (4 .2 )  

The following d i s t r i b u t i o n  of s ca t t e r ed  l i g h t  i n  d i f f e r e n t  planes corresponds 
t o  t h i s  formula: 

/84 

(1) I n  the  plane perpendicular t o  the  d i r e c t i o n  of t h e  inc ident  ray,  i .e.,  
i n  the  case B = 90": 

I -  sin%% 

(2) I n  the  plane produced by t h e  inc ident  ray and the  magnetic vec tor ,  
i .e . ,  i n  the  case (p = 90": 

I -  const -periphery 

(3) 
(4 = 0 or IT): 

I n  t h e  plane produced by the  inc ident  ray and the  electric vec tor  

I - COS* 0. 

We may obta in  t h e  s c a t t e r i n g  i n d i c a t r i x  of n a t u r a l  l i g h t  from (4 .6 )  by averaging 
over 4.  Performing t h i s  averaging, w e  ob ta in  t h e  following 

W e  have he re  changed from the  rad ius  of the  sphere a t o  its volume v. 

The t o t a l  i n d i c a t r i x  w i l l  be: 

W e  may cal l  t h e  formula (4 .8 )  t h e  Rayleigh formula. Following are its 
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c h a r a c t e r i s t i c  f ea tu re s :  

1 
(a) I n t e n s i t y  of s c a t t e r i n g  'L -,I 

A 4  
(b) Sca t t e r ing  i n t e n s i t y  i s  propor t iona l  t o  t h e  square of t he  p a r t i c l e  

volume 

(c) Sca t t e r ing  i n  f r o n t  and behind is the  same. 

Figure 11 shows t h i s  s c a t t e r i n g  i n d i c a t r i x  f o r  an extremely small particle, . /85 
The inner  curve expresses the  funct ion I 

component of s c a t t e r e d  l i g h t  which is p a r a l l e l  t o  t he  plane of v i s ion .  

= 1 2 ( B ) ,  i .e.,  t he  i n d i c a t r i x  f o r  t h e  2 

Figure 11. I n d i c a t r i x  f o r  S m a l l  p Figure 12. 
and S m a l l  m (Rayleigh Ind ica t r ix )  and S m a l l  m 

We obta in  the  following from formulas (4.7) f o r  t he  

The graph f o r  t h i s  funct ion i s  shown i n  Figure 12. 
is p o s i t i v e  f o r  a l l  angles.  It has a maximum equal  

Po la r i za t ion  f o r  S m a l l  p 
(Rayleigh Polar iza t ion)  

degree of po lar iza t ion :  

(4.9) 

The degree of po la r i za t ion  
t o  uni ty  i n  t h e  case B = 90'. 

L e t  us now tu rn  t o  the  formulas f o r  t h e  c o e f f i c i e n t s  of s c a t t e r i n g  and 
absorpt ion f o r  t h e  case under considerat ion.  
and (2.52), i f  w e  s u b s t i t u t e  t he  expressions f o r  t h e  coe f f i c i en t s  cR and bll 

i n  our case, then w e  ob ta in  the  following f o r  t h e  main terms: 

In  t h e  general  formulas (2.51) 
__ 186 

(4.10) 

(')If i t  is assumed t h a t  m does not  depend on A .  I f  m changes considerably 
with A ,  t h e  dependence of I on A will be more complex. For example, l e t  us 

assume t h a t  - 4no 'L 1 and E - 1 << - 4m , and then 'L A2.  I n  t h i s  case, 2 
w w 

both t h e  i n t e n s i t i e s  and the  s c a t t e r i n g  c o e f f i c i e n t  w i l l  be 'L and not  
A 2  1 - 

A4 - 
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(4.11) 

Here v i s  the  p a r t i c l e  volume. 

Formula (4.10) determines t h e  so-called Rayleigh s c a t t e r i n g  coe f f i c i en t .  

Assuming t h a t  E = 1, and oa = 0 and introducing the  ind ices  of r e f r a c t i o n  a 
and absorpt ion of t he  p a r t i c l e ,  w e  ob ta in  

(4.12) 

For s m a l l  p ,  t he se  formulas must c lose ly  descr ibe  the  phenomena, s ince  the  
cor rec t ion  terms f o r  them, as follows from 111, 1, have the  order  p2. 

Two important f a c t s  must be pointed out here:  (1) when t h e r e  is no disper- 
s i o n ,  i .e.,  f o r  constant  x and n ,  wi th  an increase  i n  A the  a t t enua t ion  coe f f i c i en t  
f o r  a s m a l l  p a r t i c l e  decreases as 1 , ins tead  of as 2 according t o  Rayleigh; 

(2) t he  a t t enua t ion  coe f f i c i en t  f o r  a s m a l l  p a r t i c l e  is  propor t iona l  t o  i t s  
volume, and not  t he  square of t h e  volume, as is s t a t e d  by Rayleigh. 

A A 4  

This means t h a t ,  when l i g h t  passes  through a l a y e r  of tu rb id  medium, t h e  
a t t enua t ion  of t he  bundle w i l l  be simply propor t iona l  t o  the  amount of substance 
on t h e  path of the  ray.  
t h a t  p << l), the  a t t enua t ion  coe f f i c i en t  f o r  a s m a l l  p a r t i c l e  s i g n i f i c a n t l y  
exceeds the  s c a t t e r i n g  coe f f i c i en t .  

This a l s o  means t h a t ,  s i n c e  p 3  >> p6 (we should recall  

Thus, f o r  s m a l l  p a r t i c l e s  the  absorption, i f  i t  occurs,  usua l ly  considerably 
exceeds the  sca t t e r ing .  

W e  should a l s o  note  t h a t ,  according t o  formulas (4.10) - (4.121, w e  must 
I n  some cases, when t h e  obta in  a decrease i n  k and k with an increase  i n  A. 

dependence of n and x upon A i s  taken i n t o  account (and a l s o  when allowance i s  
made f o r  t h e  second and t h i r d  terms i n  the  expansion with respec t  t o  p )  k ( A )  

and k ( A )  have maxima. 

P 

P 

This maximum w a s  ca lcu la ted  by M i e  f o r  k f o r  example, f o r  p a r t i c l e s  of 

gold (see Figure 13; 1 and 2 -- d ipo le -e l ec t r i c  s c a t t e r i n g  f o r  Au and m = 0 0 ,  

3 -- dipole-e lec t r ic  + magnetic s c a t t e r i n g  f o r  m = 0 0 ) .  It is  i n t e r e s t i n g  t o  
note  t h a t  t he  s c a t t e r i n g  capab i l i t y  of gold p a r t i c l e s  i s  thus g r e a t e r  than t h a t  
of absolu te ly  conductive p a r t i c l e s  having t h e  same dimensions. 

P' - 187 , 

The pos i t i on  of the  r ad ia t ion  maximum is  determined, i n  a c e r t a i n  sense,  
by t h e  resonance between the  eigen electromagnetic o s c i l l a t i o n s  of t he  sphere 
and t h e  ex te rna l  f i e l d .  

There is' one misunderstanding r e l a t e d  t o  formulas (4.10) and (4.11) , which 
The a t tenuat ion  c o e f f i c i e n t  must change i n t o  t h e  sometimes leads t o  confusion. 
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s c a t t e r i n g  c o e f f i c i e n t  when the  absorpt ion of l i g h t ,  i n  t he  proper meaning of 
t h e  word, i s  absent.  
f o r  k, we then obtain k = 0, while w e  should have obtained k = k . However, i f  we  assume t h a t  m i s  real i n  formula (4.11) 

P 

I n  addi t ion ,  i f ,  f o r  example, t h e  
imaginary p a r t  of my  which f i r s t  equals  
zero,  increases  by an i n f i n i t e s i m a l  
amount, the  a t tenuat ion  coe f f i c i en t  
must a l s o  change by an i n f i n i t e s i m a l  
amount. According t o  our formulas, i t  
follows t h a t  k must suddenly change t o  

k ,  which has an e n t i r e l y  d i f f e r e n t  
P 

Figure 13. Coeff ic ien t  of Sca t t e r ing  value. 
by Small P a r t i c l e s  

I n  order  t o  explain these  ambigu2- 
i t i e s ,  w e  should note  t h a t  formula (4.1) ,  
wi th  which we obtain the  expressions 

(1) - gold particles; 2 ,  3 - p a r t i c l e s  
with m = m, 

f o r  k and k contains  only the  f i r s t  
P’ 

t e r m  i n  the  expansion of the  coe f f i c i en t  c i n  series with respec t  t o  p. W e  

may show t h a t ,  i f  allowance is  made f o r  the subsequent terms i n  the  expansion 
with respec t  t o  p ,  w e  may obta in  the  general  formula f o r  the  a t tenuat ion  co- 
e f f i c i e n t ,  which changes i n t o  the  formula f o r  t h e  Rayleigh s c a t t e r i n g  coe f f i c i en t  
i n  t h e  case of a s m a l l  imaginary p a r t  of m. 
p a r t ,  i t  changes i n t o  formula (4.11). 

1 

I n  t h e  case of a l a r g e  imaginary /88 

I n  acua l i t y ,  s u b s t i t u t i n g  the  expressions f o r  r ,  q ,  p and t given i n  111, 
and co l l ec t ing  the  terms of one order  with respec t  t o  1 i n  t h e  formula f o r  c 

p,  w e  obta in  
1’ 

(4.13) 

Subs t i t u t ing  the  expression (4.13) f o r  c and the  expressions f o r  c2 and bl 

according t o  formula (4.1) ( the  subsequent terms w i l l  be of a higher  order  with 
respec t  t o  p) i n  t he  formula for k,  we obtain:  

1 

(4.14) 
ma- + * .  .]+6(m9- l)  -$(k3)+. . .). (4.14) 

This is  the  genera l  formula f o r  k as a func t ion  of p and m f o r  small 
p a r t i c l e s  (within an accuracy of terms whose order  i s  higher  than p6). 

I f  t h e  imaginary p a r t  of m is s u f f i c i e n t l y  l a r g e ,  w e  then obtain t h e  
formula (4.11), and i f  i t  i s  s m a l l ,  w e  ob ta in  
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This accura te ly  coincides  with the Rayleigh s c a t t e r i n g  coe f f i c i en t .  

I f  t he  imaginary p a r t  i s  comparable with p3 ,  then the  a t t enua t ion  coe f f i c i en t  
must be ca lcu la ted  according t o  t h e  general  formula ( 4 . 1 4 ) .  

W e  should add t h a t  f o r  s m a l l  conductive p a r t i c l e s  i n  the  region wi th in  
which t h e  Gagen-Rubens l a w  appl ies  (1.13) (A > 51.1) , we have 

1 Thus, t he  ' a t tenuat ion  c o e f f i c i e n t  is % - 
A 2  ' 

The region of values of p ,  where i t  i s  v a l i d  t o  employ the  simple formulas 
given i n  t h i s  s ec t ion ,  may be determined both by t h e  value of m (more precisely& 
m - l), and by the  accuracy which w e  requi re  from the  formulas. 
d i f f e r e n t  f o r  d i f f e r e n t  formulas. For example, f o r  t he  i n d i c a t r i x  i n  the  case 
of drops of w a t e r  i n  t he  v i s i b l e  region (m = 1.33) , the Rayleigh fornula  ( 4 . 8 )  
i n  t h e  case p = 0 . 3  y i e l d s  an e r r o r  of 5%. I f  i t  is  assumed t h a t  an e r r o r  of 
2-3% i s  permissible ,  then the  region of a p p l i c a b i l i t y  f o r  (4 .8 )  w i l l  be p 2 0.25. 

It w i l l  be 

§ 2. Absolutely Reflect ing P a r t i c l e  

I f  t h e  complex r e f r a c t i v e  index of a substance i s  very l a r g e  (as compared 
with un i ty ) ,  t h e  electromagnetic f i e l d  w i l l  bare ly  pene t ra te  the  substance.  
formal terms, t h i s  follows from the  f a c t  t h a t  i n  t h i s  case t h e  r e f l e c t i o n  co- 
e f f i c i e n t ,  which is determined by t h e  Fresnel formulas, w i l l  be c lose  t o  uni ty  
f o r  any angle 
i n t e n s i t y  of t he  f i e l d  pene t ra t ing  t h e  substance w i l l  be c lose  t o  zero.1 
phys ica l  f a c t o r s  causing the  phenomena w i l l  be d i f f e r e n t ,  depending on what 
causes t h e  l a rge  values  of t he  modulus m -- whether i t s  imaginary o r  real p a r t  
i s  l a rge r .  

I n  

of incidence,  whereas the  pene t ra t ion  c o e f f i c i e n t  i nd ica t ing  the  
The 

I n  the  f i r s t  case, the  f i e l d  does not pene t r a t e  t he  body, due t o  i t s  
absorpt ion i n  the  substance. 
along the  d iv id ing  su r face  and which is rap id ly  weakened wi th in  the substance.  

W e  ob ta in  a heterogeneous wave which is propagated 

I n  the  second case, t h e  ex te rna l  f i e l d  i s  a t tenuated  by po la r i za t ion  of 
the  substance. For any angle  of incidence,  t he  r e f r a c t i o n  angle  w i l l  be very 

s m a l l  (% & ), and the  pene t ra t ion  coe f f i c i en t  , which is  correspondingly small, 

w i l l  be propor t iona l  t o  it. This is the  behavior of water i n  t h e  meter region. 

An approximation of l a rge  Iml may be employed i n  rad io  technology when 

("The reader  may f ind  t h e  formulas f o r  t he  c o e f f i c i e n t s  of r e f l e c t i o n  

inves t iga t ing  processes a t  the  boundary d iv id ing  the  ea r th  and air. 

and penet ra t ion  i n  Chapter V [formulas (5.1) and (5.2) 3 .  
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The case under considerat ion he re  pe r t a ins  t o  metals i n  the in f r a red  region 
(A > 51.1) where, as w e  have already indica ted ,  both the  real and t h e  imaginary 
p a r t s  of m w i l l  be la rge .  

Fe r roe lec t r i c s  o r  ferromagnets, p a r t i c u l a r l y  barium t i t a n a t e ,  whose 
f e r r o e l e c t r i c  p rope r t i e s  w e r e  r ecen t ly  discovered by B. M. Bul and I. M. Gol'dman, 
provide t h e  bes t  approximation t o  t h e  l imi t ing  case under considerat ion.  As /90 
s t u d i e s  have shown (Ref. 4 8 ) ,  t h e  d i e l e c t r i c  constant  of t h i s  substance i s  on 
the  order  of 1500 f o r  A = 18 cm a t  room temperatures. 

I n  t h i s  region of wave lengths ,  considerable  d ispers ion  i n  e i s  i n i t i a t e d ,  
bu t  i n  the  case of h = 3 c m  E has a value of about 300 ,  and i n  t h e  
h = 1 cm, i t  has a value of about 126. 

W e  s h a l l  i nves t iga t e  here  t h e  l i m i t i n g  case Iml +- and small p .  The 
approximation formulas ( 3 . 1 4 )  are inappl icable ,  s i n c e  they w e r e  obtained under 
the  assumption t h a t  Imp1 is s m a l l .  
d i r e c t l y  from the  fundamental formulas ( 2 . 3 9 ) .  Assuming m -f 

we obtain:  

I n  our case, l m l p  -f m, and w e  s h a l l  start 
i n  these  formulas, 

( 4  15) 

I f  w e  replace the  funct ion 5 i n  t he  denominators by IJJ and x according 
R R R 9  

t o  formulas (3.21, we  f ind  t h a t  

W e  thus  have 

This means t h a t  

(4.16) 
A similar r e l a t ionsh ip  holds f o r  bR.  

(2.51), t h i s  means t h a t  f b r  an absolu te ly  r e f l e c t i n g  p a r t i c l e  t he  a t tenuat ion  
coe f f i c i en t  k coincides with the  s c a t t e r i n g  c o e f f i c i e n t  k 
does not  pene t ra te  wi th in  the  p a r t i c l e ) .  

I n  accordance wi th  formulas (2.52) and 

( the ex te rna l  f i e l d  
P 

L e t  us now employ the  formulas f o r  c y l i n d r i c a l  funct ions f o r  s m a l l  p given 
i n  111, 1. 
( 4 . 1 5 )  , w e  r ead i ly  obta in  

Subs t i t u t ing  the  f i r s t  terms of the  series with respec t  t o  p i n  

(4.17) 

The s i g n i f i c a n t  d i f fe rence  from t h e  preceding case i s  immediately apparent :/91 
t he  amplitudes of the electric and magnetic p a r t i a l  waves f o r  one and the  same 
R are of one order  of magnitude. 
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W e  should no te  that the  amplitud 
i n  111, 1 [formula (3.16)] continuous 
m increases ,  which does not  occur f o  
f o r  this may be  found i n  the  following sect ion.  

The q u a n t i t i e s  c and b have the  l a r g e s t  value: 1 1 

(4.18) 

Recalling t h a t  Q, = 1 and S1 = cos 0 = -cos B f o r  the  i n t e n s i t y  of- scaf te red  

l i g h t  , w e  obta in  (na tu ra l  l i g h t  decreases) : 
I i=&a( l  -'+T, 1 

+p( ; -coSp)  b a * 
(4.19) 

The s c a t t e r i n g  i n t e n s i t y  here ,  j u s t  as i n  the formula of Rayleigh, i s  inverse ly  
propor t iona l  t o  14 and propor t iona l  t o  v2. 
dis turbed.  Pr imari ly  a l l  of t he  sca t t e red  l i g h t  is d i r ec t ed  forward. 
of l i g h t  s c a t t e r e d  forward t o  l i g h t  s ca t t e r ed  backwards w i l l  be  119, ins tead  of 
un i ty  i n  the  Rayleigh case. 

The Rayleigh symmetry i s  sharply 
The r a t i o  

Figure 14  presents  t he  s c a t t e r i n g  i n d i c a t r i x  of n a t u r a l  l i g h t  by a s m a l l  
sphere which r e f l e c t s  completely (outer curve I, inner  curve I ). A s  we may 

see, i t  d i f f e r s  considerably from the  Rayleigh i n d i c a t r i x .  W e  have a l s o  noted 
t h i s  f a c t  i n  t he  forward. 

2 

There i s  a l s o  a s i g n i f i c a n t  d i f fe rence  i n  the  po la r i za t ion  of s c a t t e r e d  
l i g h t .  The degree of po la r i za t ion  may be determined by the  formula 

(4.20) 

A t  every angle I > Ie , . i . e . ,  the  po la r i za t ion  is pos i t i ve .  A t  a ~ 1  angle 

of 90" , t he  degree of po la r i za t ion  w i l l  be 815. 
occur a t  the  angle 60°, where I vanishes.  Here p equals  unity.  We thus see 

t h a t  f o r  s m a l l  spheres ,  when m increases ,  t he  po la r i za t ion  maximum moves forward 
from 90' f o r  s m a l l m  t o  60" f o r  l a rge  m. The curve showing the  dependence of 
p on B i s  shown i n  Figure 15. 

4 
The maximum po la r i za t ion  w i l l  /92 

0 

Subs t i tu t ing  the  expression (4.17) i n  the  genera l  formula f o r  k w e  
P'  

read i ly  obta in  

(4.21) 

I n  accordance with the  s ta tements  ind ica ted  previously,  t he  f a c t  does not  
s u r p r i s e  us t h a t  t he  Rayleigh s c a t t e r i n g  coe f f i c i en t  does not  change i n t o  the  
coe f f i c i en t  f o r  i n f i n i t e l y  l a rge  m i n  the  case m + w. It is  l a r g e r  by a 
f a c t o r  of 514. 

/93 
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Figure 1 4 .  I n d i c a t r i x  of a S m a l l ,  Figure 15. Po la r i za t ion  of Light 
Completely Reflect ing P a r t i c l e  Scat tered by a Small, Completely 

Reflect ing P a r t i c l e  

The formulas f o r  t he  f i e l d s  and the  displacement of the  polar- 

1 i z a t i o n  maximum t o  B = 60" f o r  s m a l l  spheres,  f o r  t h e  l imi t ing  
case s tudied i n  t h i s  sec t ion ,  were es tab l i shed  by Thomson (Ref. 4 9 ) .  

5 3.  Resonance. Eigen Osc i l l a t ions  

The l imi t ing  case inves t iga ted  i n  the preceding sec t ion  i s  f a r  from being 
a mathematical i dea l i za t ion .  
Large, m is of g rea t  i n t e r e s t .  
the  Rayleigh l imi t ing  case t o  the  Thomson case. 
sec t ion .  W e  s h a l l  assume, j u s t  as previously,  t h a t  p << 1. With respect  t o  
the  quant i ty  m p ,  which w e  s h a l l  designate  he re  by q, ir may have any values.  

I n  a c t u a l i t y ,  the  case of l a rge ,  bu t  not  i n f i n i t e l y  
It i s  a l s o  i n t e r e s t i n g  t o  study the  change from 

W e  s h a l l  do t h i s  i n  t h i s  

Subs t i tu t ing  the  series given i n  111, 1 i n  the  general  formulas f o r  t he  
coe f f i c i en t s  (2 .39)  , we obtain the  following general  formulas f o r  the  amplitudes 
cR and bR in  t h e  case w e  are considering: 

(- 1)' P"+' P ' G  (4) - ( I +  1) q+z (4) 

(f + 1) w- * Pz+; (4) + W' (4) 
q = 

(4 .22 )  

We may see t h a t  in the case under considerat ion t h e  electric o s c i l l a t i o n  
amplitudes change p rec i se ly  i n t o  t h e  expressions given previously.  
magnetic o s c i l l a t i o n  amplitudes, t h i s  w i l l  only be the  case f o r  q -+ 

A s  f o r  t h e  

Only the  f i r s t  electric and t h e  f i r s t  magnetic o s c i l l a t i o n s  are of impor- 
tance.  

(Ref. 50) i n  r e l a t i o n  t o  the  problem of l i g h t  pressure.  

W e  ob ta in  the  following f o r  them: 

l e m  w a s  s tud ied  by Schwarzschild 
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(4 .23 )  

Employing the  e x p l i c i t  form of t h e  funct ion J, 1 f o r  y(q), we obtain /94 
(4 .24)  

I, : 

L e t  us study t h e  manner i n  which the  magnetic o s c i l l a t i o n  amplitude changes with 
a change i n  q. For small q ,  w e  have 

(4 .25 )  

5 2  
30 This holds f o r  bl = - 

I n  t h i s  case bl << cl, and w e  ob ta in  Rayleigh sca t t e r ing .  

i n  accordance with the  formula (4 .1 )  given i n  § 1. 

Figure 16.  Curves f o r  Resonance ( the  Curves are Deformed 
as m Increases ,  S t r iv ing  to the  Limiting Curve; t he  Curve 
Given on the  Right is f o r  a Completely Reflect ing P a r t i c l e ) .  

With an increase  i n  q, t h e  funct ion y(q) decreases ,  and f o r  q = a i t  becomes 
minus i n f i n i t y .  Resonance occurs here .  Then y becomes p o s i t i v e  (+ m), and i n  
the  case q = 28 again s t r i v e s  t o  minus i n f i n i t y .  
i n  genera l ,  f o r  q = mp = ka, where k is a whole number (see Figure 16). 

The resonance phenomena occur, 

The wave lengths  a t  which resonance occurs may be determined by t h e  follow- 
ing formula: 

b - p  2am &a81,2, 3, ... (4 .26)  

The i n t e n s i t i e s  of s c a t t e r e d  l i g h t  may be  determined by t h e  following formulas /95 

(4 .27 )  

I n  the  case of resonance, t h e  s c a t t e r i n g  i n t e n s i t i e s  become i n f i n i t e .  
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For s m a l l  q ,  t h e  s c a t t e r i n g  i n d i c a t r i x  w i l l  be a Rayleigh ind ica t r ix .  As 
q increases ,  t he  i n d i c a t r i x  w i l l  be deformed. 
t r i x  of an absolu te ly  r e f l e c t i n g  p a r t i c l e .  
as resonance i s  approached, the  i n d i c a t r i x  again becomes a Rayleigh i n d i c a t r i x ,  
but  the  absolute  i n t e n s i t y  values  w i l l  be very la rge .  I n  Figure 17 we  give t h e  
s c a t t e r i n g  ind ica t r ixes  f o r  t h e  cases 1) y = 0.5, 2) y = 1, 3)  y = 5, 4 )  y = 10. 
This f i g u r e  i l l u s t r a t e s  t he  change i n  the  i n d i c a t r i x  when resonance is  approached. 
(Curves 1 and 2 have t h e  same scale; 3 is two t i m e s  smaller, and 4 is  10 t i m e s  
smaller). 

When y = 1, we obta in  the  indica- 
With a f u r t h e r  increase  i n  q and 

Figure 17 .  Ind ica t r ixes  of a S m a l l ,  Very Refrac t ive  
Particle. (As Resonance i s  Approached, t he  I n d i c a t r i x  
S t r ives  t o  a Rayleigh Ind ica t r ix ) .  

With an increase  i n  q ,  the  branches of t h e  curve y(q) w i l l  gradual ly  be 
For l a rge  q ,  t h e  curves w i l l  d i f f e r  very l i t t l e  from the  l imi t ing  deformed. 

curve shown on the  r i g h t  i n  Figure 16.  
except q = kn. 
preceding sec t ion  (m = m ) .  

Here y(q) w i l l  equal  un i ty  f o r  a l l  q ,  
W e  thus  obta in  the  t r a n s i t i o n  t o  the  case inves t iga ted  i n  the  

The s c a t t e r i n g  coe f f i c i en t  i n  t h e  case under considerat ion w i l l  be: - /96 
24nW (4 .28)  

As resonance i s  approached, k 

J u s t  as i n  the  customary resonance problems, t he  s c a t t e r i n g  i n t e n s i t i e s  

increases  i n d e f i n i t e l y .  
P 

can be kept from becoming i n f i n i t e  by allowing f o r  t he  subsequent expansion 
terms which w e r e  omitted previously.  

I n  the  amplitude of the  magnetic d ipole  o s c i l l a t i o n ,  which only resonates  
once i n  our case, l e t  us take  i n t o  account t he  following terms i n  t h e  expansion 
with respec t  t o  p .  For y w e  obtain:  

W e  have only w r i t t e n  here  those supplementary terms which appear i n  the  
denominator y (9) , s i n c e  resonance is re l a t ed  t o  the  vanishing of t he  denominator. 
Subs t i tu t ing  q = kn and not ing t h a t  
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w e  obta in  
3 3 'I (kx )  = p and b, ( k x )  = '2- p. 

I n  resonance, we  now have 

(4 .29)  

W e  have obtained the  Rayleigh s c a t t e r i n g  i n d i c a t r i x ,  bu t  with s c a t t e r i n g  
i n t e n s i t i e s  which are l a rge r  by a f a c t o r  of 9 . 
i n  resonance w i l l  be 

The s c a t t e r i n g  c o e f f i c i e n t  
4P 4 

(4 .30 )  
k = 67raQ. 

Thus, t h e  resonat ing p a r t i c l e  s c a t t e r s  a flux which is 6 t i m e s  l a r g e r  
This c o e f f i c i e n t  i s  than t h a t  which a r r i v e s  on i t s  geometric cross  sec t ion .  

a l s o  9 
t h a t  t h e  s c a t t e r i n g  of a f e r r o e l e c t r i c  b a l l  made of barium t i t a n a t e  with a = l c m  
and with m = 39 w i l l  be  53,000 t i m e s  l a r g e r  f o r  t h e  f i r s t  resonance peak than f a r  
from it. 

t i m e s  l a r g e r  than the  Rayleigh coe f f i c i en t .  For example, t h i s  means /97 
4P4 

The problem of the  eigen electromagnetic o s c i l l a t i o n s  of a sphere i s  c lose ly  
r e l a t e d  t o  the  problem which w e  are inves t iga t ing  of dipole-magnetic resonance. 
This problem w a s  s tud ied  by Debye (Ref. 3 3 ) .  

The s e l e c t i o n  of the  poss ib l e  eigen o s c i l l a t i o n s  i s  determined i n  p rec i se ly  
the  same way as the s e l e c t i o n  of the  eigen e las t ic  o s c i l l a t i o n s  of any e las t ic  
system. 
f r e e  electromagnetic o s c i l l a t i o n s  of space outs ide  of the sphere,  i n  t he  non- 
homogeneous system of equations (2 .35 )  - ( 2 . 3 6 ) ,  determining the  amplitudes of 
forced o s c i l l a t i o n s ,  we must set  the  f r e e  terms (forced f i e l d )  equal  t o  zero. 
We thus obta in  a homogeneous system whose so lu t ion  condi t ion i s  t h a t  t h e  corresp- 
onding determinant equal  zero. 
o s c i l l a t i o n s ,  w e  thus a r r i v e  a t  t h e  following equation: 

I n  order  t o  determine the  amplitudes of p a r t i a l  waves producing t h e  

I n  order  t o  determine the  eigen electric 

and f o r  t he  magnetic o s c i l l a t i o n s  w e  a r r i v e  a t  t he  following equation 

(4 .31)  

(4 .32 )  

For each E, t h i s  y i e l d s  an i n f i n i t e  row of roo t s ,  and a complete s e l e c t i o n  of 
t he  system roo t s  forms an i n f i n i t e ,  two-dimensional a r ray .  

Two such ar rays  are included i n  our problem -- one f o r  electric o s c i l l a t i o n s ,  
and the  other  f o r  magnetic o s c i l l a t i o n s .  

For absolu te ly  r e f l e c t i n g  p a r t i c l e s  (m = m) , w e  simply obta in  
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6 ( p l a o  f o r  electric o s c i U a t i o 9  

r;(p)==o f o r  magnetic o sc i l l a t io r j s  ( 4 . 3 3 )  

W e  r ead i ly  see from formulas ( 3 . 5 )  t h a t  i n  the case under considerat ion 
the  i n f i n i t e  rows i n  each of t he  a r r ays  degenerate i n t o  f i n i t e  rows. 
of "electric" eigen roo t s  contains  (R + 1 )  i n  a row, and t h e  a r r ay  of "magnetic" 
roots  contains  -R terms i n  a row. 

Thk array& 

The determinants of a homogeneous system are the  denominators i n  amplitudes 
of p a r t i a l  waves of forced o s c i l l a t i o n s .  The f a c t  t h a t  they vanish designates  
t h e  f a c t  t h a t  t he  amplitude becomes i n f i n i t e ,  i f  the  numerators of t he  amplitudes 
also vanish.  

However, it may be shown t h a t  a l l  the  roots  are complex. This means t h a t  
f o r  any real p i t  is impossible f o r  t he  amplitude t o  become i n f i n i t e .  One 
exception i s  the  case of s m a l l  p and l a r g e  m y  which is inves t iga ted  i n  t h i s  
sec t ion .  A s  follows from formulas (4 .221,  w e  here  have 

I +; (9) t ions.  
f o r  magnetic o sc i l l a -1  
t i o n s .  +r (4) 

= O  f o r  e l e c t r i c  o s c i l l a -  

-=--- ( 4 . 3 4 )  

Each of these  equations has a count less  number of real  roots .  

The e l e c t r i c  e igen o s c i l l a t i o n s  do not  lead  t o  resonance, s ince  i n  the  case 
of e igen frequencies t h e  numerator i n  t h e  aqpl i tudes 
vanishes.  
case of e igen frequencies .  I n  view of p << 1, t h e  d ipole  resonance which w e  
alone have s tudied  i s  of g rea t  importance. 

of the  induced waves a l s o  
With respec t  t o  magnetic o s c i l l a t i o n s ,  they produce resonance i n  the  

The complexity of t he  roo t s  i s  caused by the  damping of e igen o s c i l l a t i o n s .  
The reason f o r  t he  damping i s  the  r ad ia t ion  of energy. The o s c i l l a t i o n s  are 
damped p a r t i c u l a r l y  s t rong ly ,  i f  t he  r e f r a c t i v e  index of the  sphere i s  c lose  t o  
the  r e f r a c t i v e  index of t h e  ex terna l  medium. 

W e  should a l s o  note  t h a t  f o r  an absorbing sphere t h e  damping, i n  addi t ion  
t o  the  r ad ia t ion ,  i s  connected wi th  absorption. 

CHAPTER V 

LARGE PARTICLES 

§ 1. Derivat ives  of Rays 

W e  inves t iga ted  the  s c a t t e r i n g  of l i g h t  by s m a l l  p a r t i c l e s  (p <<l) above. 

L e t  us now tu rn  t o  another l imi t ing  case, t h e  case of p >>l. It i s  very 
complex t o  obta in  t h e  p rec i se  numerical r e s u l t s  according t o  the  formulas given 
i n  Chapter 11. W e  have already indica ted  previously t h a t  f o r  p >> 1 a l l  
amplitudes of p a r t i a l  waves up t o  R Q, p, approximately, are of t he  same order 
and, consequently, a t t e n t i o n  must be given t o  a l l  of them. For example, t h i s  
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means t h a t  f o r  a drop of cloud wi th  a = 10 1.1 w e  must r e t a i n  120 - 150 terms i n  
t h e  sums ( in  the  v i s i b l e  region) ,  and f o r  a drop of r a i n  with a = 100 1.1 w e  must 
r e t a i n  1200 terms! The ca l cu la t ions  become p r a c t i c a l l y  impossible. It is 
apparent t h a t  we  must search f o r  some approximation methods t o  study t h i s  l i m i t -  
ing  case. 

Drops of r a i n ,  from the  viewpoint i n  which w e  are i n t e r e s t e d ,  d i f f e r  i n  no 
way from s m a l l  sphe r i ca l  lenses .  
employ the  methods of geometric op t ics .  
methods f o r  analyzing t h e  s c a t t e r i n g  of l i g h t  by spheres with p 5>1. 
show t h a t ,  i n  a c t u a l i t y ,  i n  t h e  l imi t ing  case of r a t h e r  l a rge  p a r t i c l e s  t he  
formulas given i n  Chapter I1 may be transformed t o  t h e  formulas of geometric 
op t ics .  S t r i c t l y  speaking, t h i s  statement i s  no t  co r rec t ,  and i n  the  case 
p + m t he  l imi t ing  case w i l l  no t  hold,  f o r  example, f o r  small angles near the  
forward d i r ec t ion  (B % 1 ). 
w i l l  be very l a rge  (% p2). 
d e t a i l  l a t e r  on. I n  t h i s  chapter w e  s h a l l  i n v e s t i g a t e  the  r e s u l t s  which are 
produced by applying the  elementary l a w s  of geometric op t i c s  t o  our problem. 

The computations f o r  them may successively 
It is n a t u r a l  t o  t r y  and apply these  

W e  s h a l l  

The s c a t t e r i n g  i n t e n s i t y  wi th in  these  s m a l l  angles 
P 

W e  s h a l l  i nves t iga t e  a l l  these  problems i n  g rea t e r  

Several  authors have appl ied geometric op t i c s  t o  the problem of scat ter ing4100 
I n  the  ar t ic le  by I. A. Khvostikov (Ref. 14)  t he  reader  w i l l  f i nd  references t o  
the  r e s u l t s  of ind iv idua l  authors.  

This problem w a s  discussed i n  the  greatest d e t a i l  i n  our work (Ref. 53), 
which w e  s h a l l  follow here.  

W e  have s t a r t e d  with the  work of academician V. V. Shuleykin (Ref. 51), 
(52), or  (35), who s tudied  the  i n d i c a t r i x  of s c a t t e r i n g  by a l a rge  t ransparent  
sphere by employing the  methods of geometric op t i c s .  However, unfortunately 
the  very beginning sec t ion  of h i s  work included an e r r o r ,  s o  t h a t  c e r t a i n  con- 
c lus ions  which he ind ica ted  are inco r rec t .  

We s h a l l  f i r s t  i nves t iga t e  the  case of a t ransparent ,  bu t  no t  absorbing, 
W e  s h a l l  then tu rn  t o  absorbing and absolu te ly  r e f l e c t i n g  particles. sphere.  

I n  courses on meteorology, t he  theory of l i g h t  s c a t t e r i n g  is  usua l ly  
s tud ied  sepa ra t e ly  from t h e  theory of coronas and rainbows. 
t a c i t l y  suggests t o  the  reader  t h a t  w e  are deal ing with d i f f e r e n t  problems. 
This po in t  of view is inco r rec t .  
of i t s  d e t a i l s ,  t h e  theory of coronas, and a l l  o ther  phenomena r e l a t e d  t o  drops 
o r  c r y s t a l s  are contained i n  t h e  general  theory of sca t t e r ing .  
e s t a b l i s h  t h e  r e l a t i o n s h i  between t h e  s c a t t e r i n g  theory and the  rainbow theory 
wi th in  t h e  framework of tge l imi t ing  case under considerat ion here .  

This separa t ion  

I n  a c t u a l i t y ,  t h e  theory of rainbows, with a l l  

W e  s h a l l  

(L = 0). 

The formulas 
of Fresnel  f o r  t h e  c o e f f i c i e n t s  of r e f l e c t i o n  r and penet ra t ion  d of l i g h t  rays  
l i e  a t  t h e  b a s i s  of our study. 
of t h e  electric vec tor  (d i r ec t ion  of o s c i l l a t i o n s ) :  (a) ly ing  i n  the  plane of 
incidence,  and (b) perpendicular t o  the  plane of incidence.  W e  s h a l l  designate  
the  former by p ,  and the  lat ter by s .  

P 
L e t  us t u rn  t o  the  geometric op t i c s  of a t ransparent  sphere. 

W e  s h a l l  d iv ide  rays with the  following d i r e c t i o n  
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As is  w e l l  known: 

(5.3) 

Here 4 is t h e  angle  of incidence,  9 -- angle  of r e f r a c t i o n ,  and n -- relative 
r e f r a c t i o n  index. 

/lo1 

For a l l  ca l cu la t ions  i n  5 2 ,  3, 4 ,  we s h a l l  d i s regard  l i g h t  absorpt ion i n  
a drop, and s h a l l  assume t h a t  n = 1.33000. 
t h e  r e f r a c t i v e  index i n  water f o r  t h e  red  l i n e  hc  =0.656 p i n  t h e  case p = 2OoC. 

This approximately corresponds t o  

Figure 18. Incidence of a Plane Bundle of Rays 
on a Drop. 

L e t  us i n v e s t i g a t e  a sphe r i ca l  drop, on which a p a r a l l e l  bundle of n a t u r a l  
l i g h t  f a l l s  i n  the  d i r e c t i o n  OX (Figure 18). 

L e t  us s epa ra t e  some of t he  planes passing through the center  of t he  drop 
and containing the  d i r e c t i o n  OX. 
de r iva t ives  of t h e  ray  which f i r s t  f a l l s  on the  drop. 
be the  first de r iva t ive ,  t h e  ray  which is re f r ac t ed  t w i c e  w i l l  be  t h e  second 
de r iva t ive ,  etc. 

W e  s h a l l  cal l  a l l  t h e  rays leaving the  drop 
The r e f l e c t e d  ray w i l l  

L e t  us enumerate the  apparent p rope r t i e s  of t h e  de r iva t ives  of t he  rays.  

1. All t he  de r iva t ives  of the  ray  which l i e s i n  our plane i n i t i a l l y  w i l l  
l i e  i n  the  s a m e  plane. Therefore,  we s h a l l  confine ourselves  t o  studying the  
manner i n  which the  s c a t t e r e d  l i g h t  is d i s t r i b u t e d  over t h e  s c a t t e r i n g  angles 
i n  the  plane which w e  have se lec ted .  
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The OX d i r e c t i o n  is t h e  axis of the c y l i n d r i c a l  symmet the  problem. /102 
W e  should note  t h a t  i f  we are discussing the  s c a t t e r i n g  of 
l i g h t ,  j u s t  as previously t h e  problem would become a plane problem, but  the  
c y l i n d r i c a l  symmetry would n a t u r a l l y  be absent.  
inc ident  bundle would be d i f f e r e n t .  
the  angle  + with t h e  d i r ec t ion  of o s c i l l a t i o n s  i n  t h e  inc ident  bundle, w e  would 
then obta in  

r l y  polar ized 

The s and p components i n  t h e  
I f  the plane under considerat ion formed 

I: = P sin' 7; fp" = P cos' 'p. 

H e r e  Io is the  i n t e n s i t y  of inc ident  l i g h t ,  Io and Io -- i n t e n s i t i e s  of t he  

s and p components i n  it. 
S P 

I n  n a t u r a l  l i g h t ,  t h e  angle  + changes continuously,  and t h e  mean values  
Io and Io are the  s a m e  and equal  L Io. 

S P 2 
2. A l l  de r iva t ives  of a p-ray are p-rays; a l l  der iva t ives  of a s-ray are 

s-rays. 

3.  A l l  der iva t ives  of a ray f a l l i n g  on a drop a t  the  angle  + leave the  
drop a t  t h e  same angle +. 

4 .  L e t  the  inc ident  ray  i n t e r s e c t  the  sur face  of t he  drop a t  a point  whose 
polar  angle  i s  0 ( the angles are read off  Erom the  d i r ec t ion  OX counterclock- 
wise) .  I f  8 > T ,  i .e.,  i f  t he  ray i n t e r s e c t s  t he  drop i n  i t s  lower p a r t ,  
i t s  subsequent der iva t ives  begin from the  poin ts  wi th  po la r  angles 0 ,  0 + u ,  
8 + 2u,.. I f  8 < T ,  i .e. ,  i f  t h e  i n i t i a l  ray i n t e r s e c t s  the  drop i n  i t s  upper 
p a r t ,  then i t s  subsequent de r iva t ives  begin from the  poin ts  with the  polar  
angles 8 ,  8 - 1.1, 0 - 2p, ... Here 1.1 = T - 2$. 

Thus, t he  poin t  a t  which the  der iva t ives  of t h e  lower ray  begin moves 
along the  circumference counterclockwise, and the  poin t  a t  which the  de r iva t ives  
of t he  upper sec t ion  begin moves clockwise. It may be r ead i ly  seen t h a t  t he  
angle of t u rn  of a ray of the  k& order  may be  determined according t o  the  
following general  formula: 

fw) = (k-2)* f 2 ('9 -(k - 1) 91. ' (5 0 4 )  
5. A l l  t he  de r iva t ives  of t h i s  ray have t h e  same "thickness" as the  /103 

inc ident  ray. Consequently, t he  following equation holds 

P = f ( 1 ) + P ) + m +  ..* 

Here Io is  t h e  i n t e n s i t y  of t h e  i n i t i a l  ray,  and I ( k )  -- t he  i n t e n s i t y  of i ts  
k& de r iva t ive .  

§ 2 .  Reflected and Refracted Light 

L e t  us i nves t iga t e  t h e  three-dimensional d i s t r i b u t i o n  of r e f l e c t e d  ray 

The angle of t u rn  f o r  de r iva t ives  of t h e  lower rays are read of f  from 
these  rays counterclockwise, and t h e  angles of t u r n  f o r  t he  de r iva t ives  of the  
upper rays  are read of f  clockwise, i.e., i n  those d i r ec t ions  i n  which these  
de r iva t ives  ac tua l ly  tu rn  (k # 1). 
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i n t e n s i t i e s .  
angle  of incidence 4 by the  following r e l a t ionsh ip  

The s c a t t e r i n g  angle  B f o r  the  r e f l e c t e d  ray  is  r e l a t e d  t o  t h e  

p(') =. x - 29. ( 5  5 )  
W e  should note  t h a t  e s s e n t i a l l y  d i f f e r e n t  r e s u l t s  are obtained, depending 

on where w e  study t h e  s c a t t e r e d  l i g h t  i n t e n s i t y  -- immediately next  t o  the  drop, 
i .e.,  i n  t h e  case R - a << a,  o r  f a r  from the  drop -- i.e., i n  the  case R >> a 
(R -- d i s t ance  from the  center  of t he  drop t o  t h e  observer).  

I n  t h e  f i r s t  case, we  can regard the  drop as a plane drop. It may be 
r ead i ly  seen t h a t  i n  t h i s  case the  i n t e n s i t y  of l i g h t  r e f l e c t e d  by d i f f e r e n t  
i l luminated sec t ions  of t he  drop w i l l  no t  depend on t h e i r  i n t e n s i t y  a t  a l l ,  and 
w i l l  equal  t he  product of t he  inc iden t  l i g h t  i n t e n s i t y a n d t h e  r e f l e c t i o n  co- 
e f f i c i e n t .  The i n t e n s i t y  of l i g h t  on the  shady s i d e  w i l l  equal  zero. 

I n  a c t u a l i t y ,  a d i f f e r e n t  amount of energy w i l l  n a t u r a l l y  f a l l  on s i m i l a r  
areas which are d i s t r i b u t e d  i n  an i d e n t i c a l  manner a t  d i f f e r e n t  l a t i t u d e s  -- 
f o r  example, LM and RS (see Figure 18). This i s  simply due t o  t h e  f a c t  t h a t  
the width of the corresponding bundles w i l l  be d i f f e r e n t .  However, s ince  the  
bundle width does not  change during r e f l e c t i o n ,  then -- f o r  example, i n  the  
po la r  regions (RS) where very narrow bundles f a l l  -- a l l  t h e  r e f l e c t e d  energy 
w i l l  a l s o  be t ransmit ted i n  very narrow bundles, so  t h a t  t he  i n t e n s i t y  of 
s c a t t e r e d  l i g h t  w i l l  not  depend on cos $, and w i l l  change propor t iona l ly  t o  r: 

f(*) = rP. 1 

L e t  us now inves t iga t e  the  i n t e n s i t y  d i s t r i b u t i o n  of s c a t t e r e d  l i g h t  a t  /lo4 
l a rge  d is tances  from the drop (R >> a ) .  

W e  may draw a concentr ic  sphere with the  rad ius  R around t h e  drop. 

I n  addi t ion ,  l e t  us inves t iga t e  a c i r c u l a r  band on our drop which has the  
angular width d$ (Figure 18). 

2 The area of t h i s  band is dSo = 2~ra s i n  $ d$. The f l u x  of l i g h t  f a l l i n g  

on t h i s  band w i l l  be 
dF(0) = f(0) cos 'p ds,. 

The f l u x  r e f l ec t ed  from t h i s  band w i l l  be 
dF(') - r dF@) = rl(O)2xa~cos 'p sin 'p dy. 

This e n t i r e  f l u x  w i l l  be s c a t t e r e d  ( r e f l ec t ed )  i n t o  the  s o l i d  angle  dD located 
between t h e  s c a t t e r i n g  angles B(1) and B(1)  + dB(1). 

The magnitude of t h i s  s o l i d  angle  w i l l  be: 2~r s i n  B(1)  dB(1). I n  view of 
(5.6), w e  have dB(1) = -2d4 and, consequently, 

I dQ I = 8x cos 'p sin 'p dy. 

("Therefore, t he  in t roduct ion  of the  f a c t o r  cos 4 i n t o  the  corresponding 
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On the observa t iona l  sphere (its rad ius  is R) , t h i s  s o l i d  angle  de f ines  

Consequently, t h e  sca t t e red  l i g h t  i n t e n s i t y  a t  the  obser- 

2 a band with t h e  area dS = R IdGI, on which l i g h t  f a l l s  which is  r e f l e c t e d  by t h e  
band on t h e  drop. 

dFu, 4% 
va t ion  poin t  w i l l  be 

JV),---I(O) .r, 
dS 4P (5.6) 

The la t te r  formula provides t h e  so lu t ion  of t h e  formulated problsm. 

The i n t e n s i t y  of l i g h t  r e f l e c t e d  by a drop i n  a c e r t a i n  d i r e c t i o n  is 
propor t iona l  t o  t h e  square of the  drop rad ius  and the  r e f l e c t i o n  c o e f f i c i e n t ,  
and does not  depend d i r e c t l y  upon cos 4. 

The quant i ty  4R2/a* cha rac t e r i zes  the  geometric t u r n  of t h e  i n i t i a l  plane 
bundle. The smaller t h e  drop, t h e  smaller the  amount of l i g h t  i t  tu rns  i n t o  the  
same s o l i d  angle ,  and the  smaller the  s c a t t e r i n g  i n t e n s i t y  per  u n i t  of s o l i d  
angle  (I(1)R2). This demonstrates t he  phys ica l  meaning of t he  dependence of 
I upon the  s i z e  of t h e  drop a2. 

For t h e  s c a t t e r i n g  i n d i c a t r i x  of s ,  p-rays (ys 1, w e  obtain:  
SP 

The t o t a l  i n d i c a t r i x  and the  degree of po la r i za t ion  i n  the  case of n a t u r a l  
l i g h t  w i l l  be as follows: 

1105 

a* 1 
I(') = T p (r*+ rp), ( 5  8 )  

For t h e  computations, i t  is advantageous t o  regard t h e  i n d i c a t r i x  d i r e c t l y  
as a func t ion  of t h e  s c a t t e r i n g  angle. By means of formulas (5.1) - (5.31, 
w e  may r ead i ly  obta in  t h e  expression f o r  rs and r 
angle of incidence 4:  

as a funct ion of only t h e  
P 

From (5.6),  w e  thus have 

(5.10) 

(5.11) 

The formulas f o r  y(1) and p(1)'can be transformed i n  a similar manner. 

(1)Formulas (5.11) are a l s o  s u i t a b l e ,  because -- i n  con t r a s t  t o  formula 
(5.1) -- they do not  l o s e  any meaning i n  the  case 

r, (x) u rl, (s) = (er. 
= T ( f o r  4 = 0): 

n + l  
76 



I n  Tables 10 and 11 (pages 91 and 93) ,  w e  have presented the  values  of 
r and r as func t ions  of t h e  s c a t t e r i n g  angle  B ( t h e  second columns). Figure 
S P 

19 shows t h e  s c a t t e r i n g  i n d i c a t r i x .  The outer  curve expresses the  t o t a l  
s c a t t e r i n g  i n d i c a t r i x  ~(1). 
of p-rays -- 
i n d i c a t r i x  given (Ref. 35). Figure 20 presents  a graph showing the  degree of 
po la r i za t ion  of r e f l e c t e d  l i g h t  p( l ) (B)  (curve 1 ) .  
obtained f o r  a B r e w s t e r  angle  of incidence 4 = arc t g  n = 53"3'40.5". 

The inner  curve expresses t h e  Sca t t e r ing  i n d i c a t r i x  
(I). W e  may see t h a t  our curve d i f f e r s  s i g n i f i c a n t l y  from the  

The t o t a l  po la r i za t ion  is 

yP 

This corresponds t o  t h e  s c a t t e r i n g  angle  f o r  which t h e  numerator /lo6 
. I n  our case, 1 1 vanishes a t  y(l) [formula (5.11)], = arc s i n  

P 1 ZiZG-i 
= 73'52'39". 

L e t  us now i n v e s t i g a t e  t h e  i n t e n s i t y  d i s t r i b u t i o n  of rays  which are re- 
f r ac t ed  t w i c e .  Af te r  two r e f r a c t i o n s ,  t h e  angle of t u r n  -- i .e. ,  t he  s c a t t e r i n g  
angle -- w i l l  be: 

A t  t h i s  angle ,  t he  p-component vanishes.  1 

j3(",=2(9-4+). (5.12) 

W e  may r ead i ly  see from formula (5.3) t h a t  t he  ray may t u r n  by a maximum 
of 82.5' as t h e  r e s u l t  of two r e f r ac t ions .  

m 

I 
Figure 19. I n d i c a t r i x  Taking only Reflected Light  

i n t o  Consideration. 

Thus, l i g h t  which i s  r e f r ac t ed  t w i c e  is d i r ec t ed  forward, and i s  loca ted  wi th in  
the cone with the angle  of t u r n  82.5'. 
c i r c u l a r  band of t he  drop with t h e  angular width d4, leaves  the t o t a l  f l u x  dFo 
a f t e r  two r e f r a c t i o n s  

The following flux,which f a l l s  on the  

dF(q P dP(0'. 

A l l  of t h i s  f l u x  on t h e  observat ional  sphere R a r r i v e s  on t h e  sur face  

dS(r, 

Employing r e l a t ionsh ip  (5.12) , w e  obta in  

R" 2a sin F O  VI. 

dm = Ip A rIn 6" 24(l.- 
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We have employed the following formula here 

which is obtained by differentiation of (5.3). 

The intensity of light which is refracted twice will be: 

Let us introduce the following notation 

(5.13) 

(5.14) 

We obtain the following for the indicatrixes of s- and p-rays, having in 
mind only light which is refracted twice: 

(5.15) 

incidence 9. Employing (5.12) , (5.3) - (5.11, we may calculate the indicatrix 
as a function of the scattering angle f5(2). 

fa) Us 
Td, = 7 t .9 4 . p  e'"'. 

Formulas (5.15) determine the indicatrix as a function of the angle of 

We here obtain: 

t (5.16) 

where q=cos- fi (2) 2n 
2 '  ==- na- I '  

Table 10 presents the results of computations using these formulas for 
s-rays, and Table 11 presents the computation results for p-rays (third column). 

The total indicatrix of light which is refracted twice will be 

(5.17) 

and the degree of polarization for this light is determined by the following 
formula 

93 COS' -- 1 2 
(1) c w 4 B + 1  2 * 

p m  =: 
(5.18) 

Thus, light which is refracted twice at all angles is polarized negativelyJ108 , 
A graph of p(2) (6) is shown in Figure 20 (curve 2). 

When both reflection and refraction are taken into account, the scattering 
indicatrixes of s- and p-rays , respectively, w e l l  be 
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Figure 20. 

(1) - Pola r i za t ion  of a r e f l e c t e d  bundle; (2) - Polar- 
i z a t i o n  of a r e f r ac t ed  bundle; (3) - Pola r i za t ion  when 
both phenomena are taken i n t o  account. 

Po la r i za t ion  of Reflected and Refracted 
Bundles. 

Here q = cosB/2, where B is the  s c a t t e r i n g  angle. 

Thus, i n  t he  second terms ( i n  the  parentheses) w e  may s u b s t i t u t e  only __ / 109 
those angles a t  which these  terms w i l l  be p o s i t i v e  0 2 2 2 arc cos . 
The complete formulas f o r  the  i n d i c a t r i x  and t h e  degree of po la r i za t ion  can be 
w r i t t e n ,  bu t  due t o  t h e i r  cumbersome na ture  w e  s h a l l  no t  w r i t e  them here.  

I El 

The graphs f o r  y(2) and y(2) + y(1) are shown i n  Figure 2 1  ( ~ ( ~ 1  is  
t h e  inner  curve,  and y(2) + y(1) i s  the ou te r  curve).  

§ 3. Light Undergoing I n t e r n a l  Reflect ions.  Rainbows 

L e t  us examine the  i n t e n s i t y  d i s t r i b u t i o n  of the t h i r d ,  four th ,  and higher  
de r iva t ives  of rays .  This pe r t a ins  t o  rays  undergoing one, two, and more 
i n t e r n a l  r e f l e c t i o n s  i n  a drop. 
is determined according t o  the  formula (5.4). 

The s c a t t e r i n g  angle  f o r  t he  I& der iva t ive  

W e  should note  t h a t  t he  angles B(k), computed according t o  t h i s  formula, 
are very la rge .  
de r iva t ives  of higher  orders ,  t he  ray tu rns  seve ra l  t i m e s  wi th in  the  drop before  
leaving f o r  t h e  outs ide.  I n  a c t u a l i t y ,  t h e  s c a t t e r i n g  angles must l i e  /110 
with in  the  l i m i t s  (0, m). This may always be  achieved by sub t r ac t ing  t h e  t o t a l  

This is simply r e l a t ed  t o  t h e  f a c t  t h a t ,  i n  t h e  case of 
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Figure 21. 
Light  (Inner Curve -- Refracted Bundle; Outer Curve -- 

I n d i c a t r i x  of Refracted and Reflected 

Composite). 

number of t u rns  and replacing the  angle  x by t h e  angle 360 - x, which is 
equivalent  t o  i t  (due t o  c y l i n d r i c a l  symmetry). 

L e t  us now c a l c u l a t e  t he  i n t e n s i t i e s .  

J u s t  as previously,  w e  f i nd  t h a t ,  i f  dF(0) is t h e  f l u x  which i n i t i a l l y  
f a l l s  on the  band of a dro having t h e  width d$, then the  por t ion  of i t  leaving 
the  drop i n  the  rays of k tt order w i l l  be 

dF(0) . rk-88, 
The three-dimensional i n t e n s i t y  d i s t r i b u t i o n  of tth der iva t ives  of t he  

rays may be determined by the  following formula 
dF(0' . $-m& I = =  

dS@) * 

Here dS(k) is the  area of t h a t  s ec t ion  of t he  observa t iona l  sphere which 
is s t r u c k  by the  kth der iva t ives  of t he  waves which i n i t i a l l y  f a l l  on t h e  band 
d$. W e  apparent ly  have : 

dS@) = 2r@ sin PW) d?(k); 

For high orders ,  dS(k)/d$ vanishes a t  c e r t a i n  angles  (shown i n  the  second 
column of Table 8),  changing the  p lus  s i g n i n t o  a minus s i g n  when $ changes 
from 90" t o  0". The extreme s c a t t e r i n g  angles f o r  de r iva t ives  of t he  corresp- 
onding orders  consequently correspond t o  these  angles.  They determine the  

t i o n  of t he  rainbow ( t h i s  w i l l  be discussed i n  g rea t e r  d e t a i l  a t  a later 

The change i n  the s i g n  of dB(k)/d$ is re l a t ed  t o  the  f a c t  t h a t  a t  high 
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orders some scattering angles which are adjacent to the rainbow direction pass 
two times in the forward and reverse directions when 4 changes. 

In addition, when the ray makes complete turns in the drop at high orders, 
the entire region of the scattering angle is traversed several times. 
example, the region 
derivatives of order ten. 
overlapped four times, etc. 

Thus, for 
22'27'36" - 16'50'52" is overlapped 5 times for 

The entire remaining region (22'27'36" - 180') is 

We shall not direct our attention to the sign of dB(k)/d$ in the calcula- /111 

For the intensity I(k), we obtain 

tions, and in the final result we shall take the fact into account that, for 
all scattering angles B(k) which appear several times , the corresponding in- 
tensities must be summed. 

(5 .20 )  

4R2 The quantity ~mr determines the geometric turn of rays in the kth order. 

This formula determines the three-dimensional intensity distribution of 
the derivatives of rays. Thus, the intensity is determined as a function 
of the angles of incidence of initial rays 4.  

The formula (5 .20 )  pertains in equal measure both to s and to p-rays. 

For certain scattering directions: it leads to infinite intensities. This 
pertains to those directions for which the denominator in 8 (k) vanishes. 

Let us first investigate the case in which sin B(k) vanishes. This occurs 
in the case B(k) = 0 or T, i.e., in the forward and backward directions. 
readily find from formula (5 .4 )  that scattering forward and backward occurs for 
all k for 4 = 0 (forward -- in the case of even k, and backward in the case of 
odd k) and for k 2 5 in the case of certain 4 # 0. 
has an indefinite value (sin 24 = 0) is included in the numerator). 
indeterminancies may be readily computed, and lead to the following formula 

We 

In the first case (4 = O)8(k) 
These 

Thus, this case does not yield infinity. On the other hand, the second 
case (4 # 0) leads to infinite intensities. 
corresponding values of 4 for different k are as follows: 

Within an accuracy of lo, the 

b - 5  6 7 8 9 10 

9-50 

---- 
31 58 26 4!i 21 62 37 18 51 32 16 

$(e)... 0 180 180 0 0180 0180 0 0180 

The occurrence of infinite intensities in our formulas indicates that geometric 
in the corresponding directions, and the correct values /112 optics is a poor model 

for the intensity may be obtained only by taking into account the wave properties 
of light (diffraction) .1 

- 
~ 

(l)This statement pertains to the idealized case investigated in the book -- 
(continued on the following page). 
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W e  have already indica ted  previously the s i g n i f i c a n t  importance of d i f f r ac -  
t i o n  f o r  determining i n t e n s i t y  i n  the  case of s m a l l  a n g l e s i n  the  forward d i r ec t ion .  

W e  would like t o  stress t h a t  a new phenomenon occurs he re  -- t he  s i g n i f i c a n t  
importance of d i f f r a c t i o n  f o r  determining the  i n t e n s i t y  d i s t r i b u t i o n  around the  
backward d i r ec t ion  -- backward d i f f r a c t i o n .  W e  should note  t h a t  t h i s  important 
f a c t  occurs only i n  the  s i x t h  order.  

L e t  us now inves t iga t e  the phys ica l  consequences of the  f a c t  that the  
parentheses vanish i n  the  denominator of 8 (k) 

It may be seen from the general  formulas given above t h a t ,  i n  t he  three- 
dimensional d i s t r i b u t i o n  of der iva t ives  of rays of t h e  t h i r d  and higher  orders ,  
there  i s  one f e a t u r e  which sharply d is t inguishes  t h e  d i s t r i b u t i o n  of these  
der iva t ives  from the  f i r s t  two. 

For each of these rays the re  i s  one d i r ec t ion  f o r  which the  parenthes is  i n  
the  denominator of 8 (k) vanishes , and consequently the  s c a t t e r i n g  i n t e n s i t y  
becomes i n f i n i t e ,  

These d i r ec t ions  may be  determined from t h e  condition: 

k - 1 cosp I----- 
n cos+ -'* 

which may be rewr i t ten  i n  the  following form 

(5.21) 

This coincides with the  w e l l  known condition determining the  pos i t i on  of 
rainbows. The s c a t t e r i n g  i n t e n s i t y  becomes i n f i n i t e l y  l a rge  f o r  t h e  rainbow 
d i r ec t ion .  

The d i s t r i b u t i o n  of d i f f e r e n t  rainbows i n  space,  up t o  e i g h t  i nc lus ive ly ,  /113 
is  shown i n  Table 8. 

It may be seen from the t a b l e  t h a t ,  when t h e  order  of t he  rainbow increases ,  
the  angles of incidenceof  the  i n i t i a l  angle $, giving the  rainbow i n  the  given 
order ,  increase ,  s t r i v i n g  t o  $' = 2. . 

2 
Thus, the r e f r a c t i o n  angles w i l l  a l s o  increase  and s t r i v e  t o  9' = 48'45'08". 

This may be seen ana ly t i ca l ly .  

For l a r g e  k, w e  have 

("continued: s c a t t e r i n g  of a plane f lux .  As Professor  A. A. Gershun has  
noted, the  i n f i n i t i e s  vanish i f  we  take i n t o  account t h e  f i n i t e  angular dimen- 
s ions  of the  source.  The order  of the  i n f i n i t i e s  appearing here  is  determined 
by the  inverse  value of these angular dimensions. 
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vnii  cp&cp'-- m. 
4.7=s (1 +---) 1 .  *A*'--- 

 cos^^-- &-I  ' k-1 ' 

2 (k l)¶ ' 2 (k - I)' COS*&----- n 

I 
59035'06" 
71 5622 
765452 
7941 20 

a 
4 
I 
6 
7 
I 
9 

10 

$2) 
--I ¶ 

a in .  da 

137028'52'' 0,08794 
1295358 0,03516 
4252 40 0,01937 
42 1740 0.00901 

TABLE 8 

81 2835 
824344 
833926 
842226 

12631 10 Ob0832 
1494626 0,00486 
662156 0,00465 
165052 0,00367 

0,00377 
0,00381 
0.00247 

0,001 19 
O,OOO88 

~ 0,00072 
0,cxmSS 

' 0.00163 
I 

Pk MI0 

9 1.78 
80,45 
77.34 
6 9 3  
74,s 
69.12 
73,04 
7235 

(5 .22)  

Employing t h e  general  formula ( 5 . 4 )  f o r  B ( k ) ,  w e  f i n d  t h a t  the d i s t r i b u t i o n  
of rainbows having higher  orders  i n  space is approximately determined by t h i s  
formula, i f  w e  s u b s t i t u t e  t h e  following expressions obtained above i n  t h i s  
formula, ins tead  of 4 and $: 

) / n i  p"' r a i n  ~ . ( k - 1 ) ~ - 2  ( k - l ) q f  --. k-1 (5 .23 )  

I n  t h e  case k = 10, t h i s  formula determines @(kj  wi th in  an accuracy of 3'.  r a in .  

For odd rainbows (k = 2% + 1) , w e  have: 

o r ,  f o r  l a r g e  E: 

For even rainbows [k = 2(R + 1) 1 : 

o r  f o r  l a r g e  R: 

Thus, t h e  d i r e c t i o n s  of both odd and even order  rainbows, f o r  s u f f i c i e n t l y  
l a r g e  R, r o t a t e  i n  space,  turning by t h e  angle 4'4' with an increase  i n  t h e  order  
R. Thus,even order rainbows are displaced by t h e  angle  R + 2$' with  respec t  t o  
odd order  rainbows.We should note  t h a t  i t  is  impossible f o r  t h e  d i r e c t i o n s  of 
rainbows t o  coincide p r e c i s e l y  f o r  d i f f e r e n t  o rde r s ,  due t o  t h e  transcendent 
na ture  of t h e  angle $'. 

I n  t h e  rainbow d i r e c t i o n s  , the s c a t t e r i n g  i n d i c a t r i x  ( in  t h e  approximation 
under considerat ion of geometric op t i c s )  w i l l  have i n f i n i t e  rays. Thus, t h e  
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i n t e n s i t y  w i l l  be very small f o r  de r iva t ives  of t he  esponding order ,  i f  we 
devia te  a l i t t l e  from the  rainbow d i r e c t i o n  (see Tab 10 and ll), s ince  t h e  
t o t a l  f l u x  included i n  the  de r iva t ives  of any orders  is f i n i t e .  
decreases with an increase  i n  the  order ,  s o  t h a t  l i g h t  i s  pr imar i ly  sca t t e red  
by drops a t  low orders  (see Table 9). 

It rap id ly  

L e t  us employ I' and I" t o  designate  a l l  t h e  q u a n t i t i e s ,  except f o r  those 
which p e r t a i n  t o  k-th rays ,  i n  t he  formula f o r  t h e  degree of po la r i za t ion  of 
s c a t t e r e d  l i g h t  p: 

+ em (e-' d:- 4-a d i )  

r* + Sf') (e-* d: + $-' d i )  * 
I n  t h e  d i r ec t ion  of a rainbow of the  (k - 2)-order, t he  q u a n t i t i e s  I' and 

I" are f i n i t e ,  whereas e(k) is  h f i n i t e l y  large.  Disregarding t h e  q u a n t i t i e s  
I' and I", w e  consequently f ind  t h a t  t h e  degree of po la r i za t ion  of l i g h t  i n  a 
rainbow of the  (k - 2)-order i s  determined by the  following formula 

(5.24) 

Employing the  r e l a t ionsh ip  (5.21) and formulas (5.10) , w e  r ead i ly  f ind  t h a t  /115 
r and r f o r  a ray  leading t o  the  rainbow w i l l  be: 

S P 

k-1- -k  
' *= (k -1+nS)  

This enables us t o  rewrite formula (5.24) f o r  pk as follows: 

(5.24*) 

Formula (5.24*) is much more s u i t a b l e  than (5.24), s i n c e  i t  enables us t o  
c a l c u l a t e  pk f o r  p a r t i c l e s  of d i f f e r e n t  substances and f o r  rainbows of d i f f e r e n t  

orders  d i r e c t l y  i n  terms of n and k. 
verse o s c i l l a t i o n  i n t e n s i t i e s  i n  the  rainbow t o  t h e  longi tudina l  o s c i l l a t i o n  
i n t e n s i t i e s .  

The quant i ty  A is the  r a t i o  of t he  t rans-  

Table 8 presents  t h e  values  of t h e  q u a n t i t i e s  pk f o r  rainbows of d i f f e r e n t  

At ten t ion  should be  c a l l e d  t o  the  high degree of l i g h t  po la r i za t ion  i n  orders .  
t he  rainbows. The i n t e n s i t y  of t ransverse  o s c i l l a t i o n s  exceeds the  i n t e n s i t y  
of longi tudina l  o s c i l l a t i o n s  by a f a c t o r  of 5.5 (see Table 8, next  t o  the  last 
column). 

P. N. Chirvinskiy (Ref. 54$ has inves t iga ted  t h e  degree of l i g h t  polar iza-  
t i o n  i n  the  f i r s t  rainbow. Af te r  observing t h e  rainbow through a Nicol prism 
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he established the fact that when the Nicol prism 
the "rainbow completely disappeared. 
polarized weakly, but very completely". 
quantitative measurements. 

was at a certain position, 
This indicates that its light is not 
Unfortunately, he did not make any 

In conclusion, let us turn to the nature of the infinities occurring in 
the formulas of geometric optics. 
P are simply related to the fact that in these directions diffraction around 
the drop contours, diffraction forward or backward, is of essential importance. 
At first glance, the infinite intensities occurring in the rainbow directions 
are less understandable. 
Due to the purely geometric properties of a spherical surface, the scattering 
angles of rays for orders of k 3 2 are sharply limited by the rainbow directions 
(by the angles @$tan.). Every limitation upon the wave leads to diffraction 
around the limiting edge. 
rainbow is very similar to the intensity distribution in the case of diffraction 
at the edge of an infinite half-plane. 

The infinities in the directions B = 0 and 

However, the situation here is due to diffraction. 
/116 

In actuality, the intensity distribution in the 

Figure 22. Intensity Distribution in 

(1) - According to geometric optics; 
(2) - According to wave theory. Quan- 
tities which are proportional to the 
angles of deviation from the rainbow 
direction are shown along the 
abscissa axis. 

the Rainbow. 

When one moves far into the geo- 
metric shade, the intensity of light 
in this case decreases monotonically, 
whereas in the illuminated 
region it -- while oscillating -- strives 
to a constant value.1 
distributed in a similar manner accord- 
ing to the Airy theory in the case of 
rainbows. In the case of transition to 
angles which are less than the angle of 
minimum deviation, the intensity de- 
creases monotonically, whereas for 
angles which are larger than the minimum 
angle, it oscillates, being damped. In 
Figure 22 we schematically present the 
intensity distribution around the rain- 
bow directions according to geometric 
optics (curve 1) and according to the 
diffraction theory of Airy (curve 2). 

Intensity is 

§ 4 .  Enerpy Distribution Between Different Fluxes 

Let us investigate the problem regarding what portion of the entire light 
flux falling on a drop is reflected from it,what portion penetrates it, being 
refracted twice or undergoing a certain number of internal reflections. 

The total flux falling on a drop is F(O) = I(O)na2. The quantity dF(O) 
arrives at a circular band with the angular width d+ (see § 2). 

cl)We should note that several excellent experimental investigations of 

/117 - 

this phenomenon have been made by V. K. Arkad'ye;. 
courses on optics. 

They are included in all 
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The f l u x  r e f l e c t e d  by t h i s  band w i l l  be  rdF(0); t he  f l u x  which is re f r ac t ed  
t w i c e  w i l l  be d2dF(*) ; t he  flux undergoing one i n t e r n a l  r e f l e c t i o n  w i l l  be 
rdzdF(O) , etc. 

Consequently, t h e  unknown por t ions  of l i g h t  f l u x  i n  s c a t t e r e d  rays  of 
d i f f e r e n t  orders  may be  expressed by the  following formula 

(5.25) 

These formulas may be equal ly  appl ied both t o  s- and p-rays. 

For s-rays,  t he  q u a n t i t i e s  R(k) may be r ead i ly  ca lcu la ted  i n  general  form. 

L e t  us introduce the  following q u a n t i t i e s  i n t o  t h e  inves t iga t ion  

S 

=P 
h= Jr.s In 29 dy. 

0 

W e  have t h e  following from formulas (5.25) 

(5.26) 

I n  order  t o  c a l c u l a t e  JIk, w e  s h a l l  transform the  i n t e g r a l  t o  a new va r i ab le  

y = G .  

/ 118 - 

(5.27) 

"4(%-1)(%+ (n*--r) 1) ( 2 - p 4 [ 2 k +  1 -fI'(Zk-l)]}, 

where p-- n-1 cy-fI for 'p=O). 
n + l  

For t h e  quant i ty  Rs, w e  now have 

and so on. 

For l a r g e  k,  we  may disregard the  t e r m  containing 83k-l i n  t h e  formula f o r  
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+k, s i n c e  f3 is  a s m a l l  quant i ty .  

67 = 1.432 - 10-6. 
of 10-5, beginning wi th  k = 3 ,  w e  may write 

T!aus, f o r  example, i n  our case f3 = 0.1416 and 

Consequently, i f  w e  wish t o  confine ourselves t o  a n  accuracy 

k I 2 3 4 I S  6 

s-rays... IQlll 82324 6.117 4962 036.4 0,103 
p-rays.. . 3,074 94.643 1,877 0.255 0,076 o,m 
Combined. 6,592 88,483 3.997 0.608 0,170 0,066 

10 c I '  O l s  1 

S-raYs. * 0.048 0 . B  0.015 0,009 99,977 

Combined. 0,032 0,016 0,010 0,oOS 99,981 
P-raYs** 0,015 0,008 am5 0,003 99,985 

L 

For l a r g e  

Thus, f o r  

increase  i n  k. 

12 (nr- 1) *' - ' qna!k + a) = h= 2(4Rt- 1) (IN- 1) (2R + 3) (2R 4-5)' 

k,  we  have 

(5.29) 

'1 

l a r g e  k ,  the f luxes  of s-rays rap id ly  decrease (% A ) with an 
k4 

A c a l c u l a t i o n  of t h e  q u a n t i t i e s  R&k) ( fo r  p-rays) even f o r  t h e  f i r s t  orders  
P 

leads t o  cumbersome expressions.  

Employing seven-place logarithmic t a b l e s  of Vega, w e  made a numerical 
t a b u l a t i o n  of t h e  i n t e g r a l s  included i n  the  expression f o r  R&), and a l s o  f o r  

R(k). The i n t e g r a t i o n  i n t e r v a l  was  divided i n t o  90 s e c t i o n s ,  every 1". A 

comparison of t h e  r e s u l t s  derived from numerical t a b u l a t i o n  and t h e  values  
computed according t o  p r e c i s e  formulas shows t h a t  f i v e  s i g n i f i c a n t  d i g i t s  are 
r e l i a b l e  i n  t h e  numerical t abu la t ion .  The r e s u l t s  derived from these  cal- 
cu la t ions  i n  percents  f o r  t he  first t e n  o rde r s  a r e  given i n  Table 9 both 
f o r  s-and p-rays and f o r  t h e  complete f lux.  

P 

S 

/119 - 

TABLE 9. TABLE SHOWING ENERGY DISTRIBUTION BETWEEN SCATTERING 
OF DIFFERENT ORDERS (IN PERCENTS) 

W e  may see from Table 9 t h a t  i n  the orders  under consideration, 99.98% of 
the t o t a l  f l u x  f a l l i n g  on t h e  drop is included; 6.6% of t h e  f l u x  i s  r e f l e c t e d  
from t h e  drop; 88.5% penet ra tes  through i t ;  4% undergoes one i n t e r n a l  r e f l e c t i o n ,  
etc. I n  a l l ,  less than 5% of t h e  inc ident  f l u x  is concentrated i n  rainbows of 
d i f f e r e n t  orders .  
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Important conclusions may be reached from Table 9 regarding the integral 
accuracy of our calculations, if we confine ourselves to considering 
scattering of a certain order. Confining ourselves, for example, to the first 
and second order, we may see that we have considered 95% of the flux falling on 
the particle, 

§ 5. Scatterinv Indicatrix And Degree Of Polarization For Scattered 
Light - 

We shall give the results derived from calculations for the scattering 
intensities of s-and p-rays according to formulas of § 3 .  We have performed calcu- 
lations for different rays of different orders up to the tenth, inclusively. All the 

order to provide sufficient accuracy even for the last orders to be studied. 
1120 computations were performed by means of the logarithmic tables of Vaga, in - 

The formulas given in § 3 give scattering indicatrixes of different orders 
as a function of the angle of incidence 4 .  Their transformation to the scatter- 
ing angles B(k) , similar to the procedure followed in the ratio of the derivatives 
of the first two orders, is not suitable for higher orders. For orders three, 
the expressions become very cumbersome, and for higher orders it is apparently 
impossible to express the intensity of scattered rays by means of trigonometric 
or other tabulated functions of the scattering angle. Therefore, we calculated 
the intensities of the scattered rays of different orders as a function of the 
angle of incidence of the primary ray 4. 
accordance with formula ( 5 . 4 )  , to the scattering angles B(k) which were fractions. 
The angles B(k) were changed to whole values by interpolation. 

These intensities were compared, in 

Since the intervals in which the argument changed were completely different 
in different intervals of 4 and at different orders, interpolation was performed 
according to the Newton interpolation method for unequal intervals. 
practically every case, it was sufficient to take into account the first differ- 
ences in order to obtain the requisite degree of accuracy. 

In 

Only for regions adjacent to the rainbow in the third order, and for the 
second order, did we also take into account the second differences. 

A comparison of the results derived from calculations of the second order, 
obtained by interpolation, with the results derived from direct calculations 
based on formulas (5 .16 )  showed that the fourth sign after the comma was 
reliable. 

The results of these calculations are given in Table 10 (for s-rays) and 
Table 11 (for p-rays). 

The Tables present the quantities ~ g ( k )  which are proportional to the 
,P 

intensities of scattered rays 

(5.30) 

All T J ~ )  (and I(kL) have several branches (as a function of the number of 
s YP S ,  
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overlappings of t h e  given i n t e r v a l  of angles  B(k)). Two branches have a I121 
v e r t i c a l  asymptote i n  the  d i r e c t i o n  of t he  rainbow of t h e  corresponding 0rder.l- 

f36 fk0 144 148 f52 156 160 164 166 172 176 taC 

Figure 23. Angular I n t e n s i t y  Changes i n  a Bundle 
Forming the  F i r s t  Rainbow 

A l l  t he  I(k) may be expressed by monotonic curves. The curves of I(3) are 
S S 

shown i n  Figure 23 by way of an example. 

I n  con t r a s t  t o  t h e  s-rays, t h e  curves I C k )  f o r  p-rays have maxima and 

minima, i n  addi t ion  t o  v e r t i c a l  asymptotes. 
sharply expressed i n  the  t h i r d  order ,  and then gradual ly  are smoothed out.  

/128 
P 

These maxima and minima are most 

The reason f o r  t hese  i n t e n s i t y  changes is the po la r i za t ion  i n  t h e  case of 
i n t e r n a l  r e f l e c t i o n s  ( the B r e w s t e r  phenomenon). Figure 23 a l s o  shows t h e  curves 
IO). 
P 

The t o t a l  s c a t t e r i n g  i n t e n s i t y  is obtained by performing summation over 

C1)Some of t he  numbers i n  the  boxes i n  Tables 10 and 11 correspond t o  
c e r t a i n  branches I(k) . 
f o r  given $. 

The lower number ind ica t e s  t h e  t o t a l  value of ~ ( k )  
SYP S,P 
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Figure 24. 

The D i g i t s  Ind ica t e  t h e  Rainbow Number. 
t he  Rainbows is Pos i t i ve  and Large. 

Tota l  Po la r i za t ion  Curve with Allowance f o r  
t he  F i r s t  Ten Bundles. 

Po la r i za t ion  i n  

d i f f e r e n t  orders  of the  i n t e n s i t i e s  of rays  s c a t t e r e d  a t  a given angle. 

The d a t a  f o r  t he  t o t a l  IC T and 'c are shown i n  Table 12: 
P '  s 

(5.31) 

This t a b l e  a l s o  presents  t h e  degree of po la r i za t ion  of s ca t t e r ed  l i g h t  p. 
6 = 0,  T ,  w e  take  i n t o  account only k < 5. 

For 

The s o l i d  curve i n  Figure 24 presents  a graph of the  quant i ty  p. 

The peaks on t h e  curve are caused by t h e  high degree of po la r i za t ion  i n  
The numbers around the  peaks designate  the  order  of 

/l30 
the  rainbows (Table 8). 
t he  rainbows. With t h e  exception of s m a l l  angular i n t e r v a l s  c lose  t o  t h e  rainbow 
and the angles 0 - 10" c lose  t o  zero,  t he  sca t t e red  l i g h t  is polar ized negat ively 
a t  angles  <68". This f a c t  i s  very important. The reason f o r  t h i s  is 
negat ive po la r i za t ion  of r e f r ac t ed  l i g h t ,  which i s  concentrated a t  the  angles  
less than 80°, and contains  88.5% of the  e n t i r e  s c a t t e r e d  l i g h t .  

The superposi t ion of high-order s c a t t e r i n g  upon simple r e f l e c t i o n  s i g n i f i -  
can t ly  changes t h e  degree of po la r i za t ion  of s c a t t e r e d  l i g h t ,  as follows from 
a comparison of the  curve p f o r  r e f l e c t e d  l i g h t  (it is shown by a dot ted  l i n e  
i n  Figure 24) with the  curve f o r  t h e  t o t a l  l i g h t .  The smallest po la r i za t ion  
value occurs a t  t h e  angle 5 5 O  and equals  -12.35%. The l a r g e s t  va lue  i s  dis-  
placed somewhat, as compared with i t s  pos i t i on  i n  r e f l e c t e d  l i g h t ,  t o  l a r g e r  
angles ,  and occurs a t  the  angle 82". It equals  97.2%. 

The curve ind ica t e s  c e r t a i n  maxima and minima which have a random 
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- 
B - 
0 

1 

2 

5 

IO 

15 

20 

25 

80 

35 

40 

45 

50 

55 

60 

65 

70 

75 

- 

*.p) 

l S o o 0 0  

0,9610 

0,9233 

0,8195 

0,6723 

035% 

0,4552 

0362 

03180 

0,1837 

0,1557 

0,1327 

0,1139 

0,0984 

OD= 

0.0749 

- 
#) 

8 

15.5982 

15,5680 

15,4783 

14,8686 

12,9519 

10,4618 

7,9784 

5,8383 

4,1467 

2,8765 

1,9475 

1282822 

0,8121 

0,4861 

0,2670 

0,1278 

0.0480 

0,OlOa 

TABLE 10 

$1 
--- 
00 

0,007 1 
0,0037 
0.0 lo8 

0,0057 
0,0027 
0,0084 

0,0016 
0,0027 
0,0043 

0,0018 
0.0007 
0,0025 

0,0017 
0,0003 
0,0020 

0,0019 
o,m2 
0,0021 

0,0024 
0,000 1 
0,0025 

0.028 1 
0,O 157 
0,0438 

00 

0,000'/ 
0,oOOa 
0,0015 

0,mt 

.n*. ' 

I 1 2 2  - 

f/123 
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- 
8 

80 

85 

90 

95 

100 

105 

110 

115 

- 

120 

125 

130 

135 

140 

145 

150 

155 

160 

165 

170 
175 

180 

O.oSs0 
0,0586 

0.0523 

0,0470 

0,0426 

0.0388 

0,0356 

0,0328 

0,0305 

0,0285 

0,ozSS 

0,0253 

0,0241 

om1 

0,0222 

0,0216 

0,021 1 

0,020s 

0,0203 

0.0201 

0,0201 

- 
$1 

- 

0,5160 
03910 
0,9070 

0,2485 
0,1980 
0.4465 
0,1221 
0*1m 
03619 

0,0499 
4 1  125 
0,1624 

0,0070 
0.0965 
41035 

0,0877 

0,0804 

0.0771 

0,0758 

TABLE 10 (continued) 

___. 

T!' - 
0,0009 

0,0011 

0,0014 

0,0018 

0,0024 

0.0032 

0,0047 

0,0010 
0,0068 
0,0078 

0,0092 
0,0115 
0,0207 

0,0433 
0,0275 
0,0708 

0,Ooal 

0 . m  

0.oOoll 
0.0001 
0.0011 

00 

- 

/124 - 

1125 - 
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45 

50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

130 I 0.0143 

0,0294 

0,0172 
0,0093 
0,0044 
0,0016 
0,0002 
0,oooo 
o,OoO5 
0,0015 
0.0027 
0,0042 
0,0057 

Is . o;oiSi 
140 I 0,0163 

145 

150 

155 

I60 

0,0173 

0,0180 

0,0185 

0,0190 

165 
170 
175 
180 

15,5982 
15,5703 
15,4875 
14,9254 
13,1510 
10,8276 
8,4822 
6,4263 
4.7635 
3,4756 
2,4977 

1,7599 

0,019s 
0,0198 
0,0200 
0,0201 

1,2036 
0,7852 
0,4747 
0,2526 
0,1066 
0,0272 
0,0012 

0,1565 
0,ooSO 
0.1645 
0,1692 
0,0325 
0,2017 
0,1395 
0.0470 
0,1865 
0,0790 
O,O,%O 
0. I370 
0.02 15 
0,ofjSo 
0,086.5 
0,0703 
0.0732 
0,0753 
o,o;.-& 

- 
P 

I_ 

O.oo02 
4OOO2 
0,0002 
0,0002 
O.OOO2 
0,0002 
0,0002 
0,0002 
0,0002 
0,0002 
0,0002 

0.0002 

0,0002 
O,ooo;! 
0,0002 
O'OOol 
0,0001 
0,0001 
0,0001 
0,000 1 

0,oolO 
0,0141 
0*03oO 
0,0001 
0,030 1 

TABLE 11 

- 
%(5) 
P 

00 

0,ooSS 
0.0165 
0,0003 
0,0168 

0,0075 
0,0001 
0,0076 
0,0014 

00 

i -- 

00 

/I26 
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TABLE 12 .  
THE TOTAL INTENSITY, AND DEGREE OF POLARrZATION OF SCATTERED 

DEPENDENCE OF INTENSITY OF S -  AND p-COMPONENTS, 

LIGHT UPON THE SCATTERING ANGLE 

B 

0 
1 
2 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
10s 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

t 

16,5984 
16,5400 
16,4102 
15,6926 
13,6269 
11,0166 
8,4375 
6.2174 
4.4630 
3,1463 
2,2096 
1,4896 
0,9720 
0,6203 
0.3820 
02301 
0, I342 
080866 
0,0674 
0,0597 
0 0537 
0:0488 
0.0450 
0.0420 
0.0403 
0.0406 
0,0512 
0.W3 
0.03 1 4 
0,0259 
0,9315 
0,4708 
0.2842 
0,1841 
081 247 
0,1083 
0.1007 
0,0972 
0,0959 

'FP 

16,5984 
1 6,50261 
16,3563 
15,6286 
13,6443 
11,1721 
8,7223 
6,5902 
4,8744 
3,5557 
2,5620 
1,7971 
1,2224 
0,7948 
0,4793 
0,2559 
0,1069 
0,0273 
0,oo I8 
0,oo I 6 
0,0027 
0,0042 
0,0057 
0,0073 
0,0088 
0,0113 
0,0259 
0,04 3 1 
0.01 73 
0,0153 
0.1808 
42 199 
0,2045 
0,1555 
0,1055 
0,0898 
0.093 
0,0953 
0,0959 

d i s t r i b u t i o n  i n  general ,  i n  addi t ion  t o  the 
rainbows. 

'F 

33,1968 
33,0426 
32,7665 
31.3212 
27,2712 
22,1887 
17,1598 
12,8076 
9.3374 
6,7020 
4,7716 
3,2867 
2, I944 
1.4151 
0,8613 
0,4860 
0,241 1 
0,1139 
0,0692 
0,061 3 

0.05.30 

0,0493 
0,0491 
0,0519 
0.0771 
0,1424 
0,0487 
0,0412 
1.1123 
0.6W7 
0,4887 
0,3396 
0,2302 
0,1981 
0.1937 
0,1925 
0,1918 

o,a5m 
o,aw 

P 

0,ooOO 
0,0011 
0,0016 
0,0020 

-O,OOO6 
-0,0070 
--0.0 166 
-0,029 1 
-0,044 1 
-0,061 1 
-0,0738 
-0,0935 
-0,1141 
-0,1235 
-0,I 130 
-0,0530 
0,1132 
0,5206 
0,94M 
0,9478 
0,9043 
O,R-llS 
0,7751 
0,7038 
0,ch15 
0,564 
0,328 1 
0,3947 
0,2895 
0,2572 
0,6749 
0,3632 
0,1631 
0,0842 
0,0834 
0,0934 
0,0398 
0,0098 
0,Oooo 

naxima i n  t h e  d i r e c t i o n s  of t h e  

Figure 25 presents  a graph showing the t o t a l  i n d i c a t r i x .  The inner  curve 
The l i n e s  on the curve denote t h e  d i r e c t i o n s  gives t h e  i n d i c a t r i x  f o r  p-rays. 

of rainbows having d i f f e r e n t  orders.  
forward, and is  concentrated wi th in  a s o l i d  angle  wi th  an opening of 65". 

Primari ly  a l l  of the l i g h t  is s c a t t e r e d  /131 

The i n t e n s i t y  of l i g h t  s c a t t e r e d  forward is  168 t i m e s  g r e a t e r  than  t h e  
i n t e n s i t y  of l i g h t  s c a t t e r e d  backwards. 

L e t  us c a l c u l a t e  t h e  amount of s c a t t e r e d  l i g h t  F(B) which is d i rec ted  
wi th in  t h e  cone, delimited by t h e  s c a t t e r i n g  angle 8 .  It is  apparent t h a t  
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Figure 2.5. 
in Terms of Geometric Optics (Lines -- Infinite 
Intensities in Directions of the Rainbows). 

Indicatrix of a Transparent Drop 

F(0) = 0 and F(n) = sa2. 
Table 12. The results derived from these calculations (in fractions of the 
quantity sa2) are given in Table 13,  where F' = 1 F. 

The function F(B) may be readily computed -y means of 

ra2 

TABLE 13* 

0,95 I 

0,969 

We may see from this table that all directions forward (B = 90')  re- 
present 94.4% of the flux falling on the particle, and all the directions back- 
ward represent 5.6%. 

Let us introduce the following notation: 

(5.32) 

We shall call the quantity T-I the coefficient of the indicatrix asymmetry. 
It is characterized by the indicatrix asymmetry and equals the ratio of the flux 
scattered forward to the flux scattered backward. 
TI = 1; in our case, q = 16.8. 

For the Rayleigh indicatrix, 

* 
Translator& Note: This was erroneously designated as Table 1 in the 

original. 
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When mul t ip le  s c a t t e r i n g  of l i g h t  i n  a turb id  medium is being inves t iga ted ,  
sometimes the  l i g h t  f i e l d  i s  approximately replaced by two rad ia t ion  f luxes  -- 
forward and backward. 

I n  t h i s  case,  elementary s c a t t e r i n g  may be  schematized i n  the  form of scatter- 
I132  ing only forward and backward. Asymmetry of the  i n d i c a t r i x  n is then of - 

importance. 
i n d i c a t r i x .  
s c a t t e r i n g  only takes  p lace  i n  the  forward d i r ec t ion .  

Its magnitude roughly charac te r izes  the form of the  s c a t t e r i n g  
For l a rge  q, f o r  example, w e  may approximately assume t h a t  elementary 

The f a c t  t h a t  t he  wave e f f e c t s  have not  been taken i n t o  account represents  
a s i g n i f i c a n t  l i m i t a t i o n  on the  a p p l i c a b i l i t y  of t he  r e s u l t s  ind ica ted  above. 

I n  c e r t a i n  d i r ec t ions ,  t he  i n t e n s i t y  d i s t r i b u t i o n  e s s e n t i a l l y  i s  determined 
by the  wave p rope r t i e s  of l i g h t .  These represent  t he  d i r ec t ions  i n  which rain-  
bows are observed, and a l s o  the  d i r ec t ions  forward and backward. 

Since the  number of rainbows is i n f i n i t e ,  t h i s  means t h a t  the s c a t t e r i n g  
i n d i c a t r i x ,  ca lcu la ted  according t o  the  formulas of geometric op t i c s ,  represents  
a func t ion  which becomes i n f i n i t e  a count less  number of t i m e s  i n  the  f i n i t e  
segment (0, IT). 

I n  order t o  apply the  computations performed here ,  i t  i s  important t o  note ,  
however, t h a t  not only the  t o t a l  area included wi th in  a l l  i n f i n i t e  branches is 
f i n i t e  ( fo r  rainbows, i t  i s  less than 5% of the  e n t i r e  area circumscribed by 
the  curve) ,  bu t  t h a t  with an increase  in  the  number the  s i z e  of the area located 
within the  branch rap id ly  decreases.  For s-rays,  f o r  example, i t  i s  % 1 . 
This means t h a t ,  wi th  an increase  i n  t h e  number, t he  cor rec t ions  introduced i n t o  
the  geometric p i c t u r e  by the  wave e f f e c t s  rap id ly  s t r i v e  t o  zero. 

F- 

I n  p rac t i ce ,  i n  order t o  obta in  a good degree of accuracy, i t  i s  necessary 
t o  cor rec t  the i n d i c a t r i x  ca lcu la ted  here  t o  a c e r t a i n  ex ten t  i n  a s m a l l  angular 
i n t e r v a l  around the  d i r ec t ions  of t he  f i r s t  and possibly the  second rainbows. 
Except f o r  t he  rainbow d i r e c t i o n ,  geometric op t i c s  is not appl icable  i n  the  
region of s m a l l  angles  around t h e  forward and backward d i r ec t ions .  
see f u r t h e r  on t h a t  a s i g n i f i c a n t  amount of l i g h t  is concentrated i n  the  forward 
d i r ec t ion .  
rainbows,and i n  the  forward and backward d i r ec t ions ,  t he  i n t e r v a l  of angles 
subjec t  t o  cor rec t ion  i s  very s m a l l .  
order  of 6/p (see V I ,  2 ) .  Therefore,  f o r  example, i n  t h e  case of the  s c a t t e r i n g  
of v i s i b l e  l i g h t  by drops of a cloud with a = 1011, where p 2 
based on geometric op t i c s  must be supplemented by allowance f o r  the wave e f f e c t s  
only i n  the  region of angles which are on t h e  order  of s eve ra l  degrees around 
zero and of approximately the  same order  around t h e  d i r e c t i o n  of the first and 

problem of v i s i b l e  l i g h t  propagation through r a i n ,  where t h e  p a r t i c l e s  are 
s i g n i f i c a n t l y  l a rge r .  

We s h a l l  

However, i t  i s  important t o  note  t h a t  both i n  the  d i r ec t ions  of t h e  

Thus, i n  t h e  zero d i r e c t i o n  it i s  on t h e  

120, ca lcu la t ions  

-./133 second rainbowsl. The s i t u a t i o n  i s  somewhat b e t t e r ,  f o r  example, i n  the  - 
Therefore,  i n  s p i t e  of t h e  f a c t  t h a t  ca l cu la t ions  based 

(')We s h a l l  d i scuss  d i f f e r e n t  methods of allowing f o r  these  e f f e c t s  a t  a 
later poin t  (Chapters V I  and V I I ) .  
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on geometric optics cannot provide an accurate indicatrix in principle, they 
must yield a good approximation to actuality in practice for the case of rather 
large particles. 

5 6 .  Nontransparent Particles 

Let us investigate the geometric optics of fully reflecting and absorbing 
particles. 

In the first case, the situation may be described very simply. 

In accordance with the formula ( 5 . 6 ) ,  the scattering indicatrix of an 
absolutely reflecting sphere will be a sphere, since rs = r = 1. 
of scattered radiation may be determined by the following formula 

The intensity 
P 

( 5 . 3 3 )  

We should note that this simple problem was discussed incorrectly in the 
book by Born (Ref. 3 8 ) .  He writes (page 392) that, in the case of an absolutely 
reflecting sphere, for h << a,a scattered wave will be completely reflected 

The picture of intensity distribution close to, and far from, a sphere is 
confused. 
that indicated by Born. However, far from the sphere, the intensity distribution 
will be spherically symmetrical. 

Close to the sphere surface, the intensity distribution will be 

The total amount of scattered radiation coincides with the total flux of 
radiation penetrating the observational sphere having the radius R. 
equal ~ I T R ~  I 
drop (intersected by the drop contours). Thus, the scattering coefficient equals 
aa2. 

It will 
= sa2T.z , i.e. , it coincides with the flux falling on a 

SYP YP 

Let us now turn to the geometric optics of an absorbing sphere. 

Just as previously, the intensity of reflected light may be described by / 1 3 4  
the formula ( 5 . 6 ) .  
complex number, the reflection coefficients for the fields will also be complex 
numbers. This indicates a shift of the phase in reflected light. 
the reflection coefficients for intensities (i.e., the quantities r and r 1, 
we must now take, not the squares of the expressions indicated in ( 5 . 1 0 ) ,  but 
the squares of their moduli. 
following expression for the sine of real refraction I)*: 

However, we must keep the fact in mind that since m is a 

In calculating 

S P 

With respect to refracted light, we have the 

( 5 . 3 4 )  

X 
Here $ is the angle of incidence, x = - n -- the absorption index, and for 

purposes of brevity we have indicated the following by 01 and B :  
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The f i e l d  amplitude decreases i n  the d i r e c t i o n  which is  normal t o  t h e  
boundary, and the  amplitude decreases by a f a c t o r  of e-A a t  a depth of one wave 
length  ( i n  a vacuum). For A ,  w e  have 

r- 

A q = 2 x * n ? ( 1 - - $ - ~ 9 ( ~  1 - t p a - l ) .  (5.35) 

I n  accordance with t h e  d a t a  given i n  Table 7 ,  w e  have x < 0.3 f o r  water i n  t h e  
i n f r a r e d  region. 

sin 'p (5 36) 
sin +* - ' 1  

Consequently, wi th in  an accuracy of 10% w e  have t h e  following 

-- 
2.e. , 

and 

x A = -  
cos +* * (5 .37)  

Thus, w e  can c a l c u l a t e  t he  r e f r a c t i o n  angle i n  terms of the real  p a r t  of 
t h e  complex r e f r a c t i o n  coe#icient .  A decrease i n  t h e  re f rac ted  wave amplitude 

-kOx + 
may be  determined by t h e  f a c t o r  e cos . This y i e l d s  t h e  f a c t o r  1135: 

7 

f o r  t h e  i n t e n s i t y  of t h e  second d e r i v a t i v e  of t h e  ray. I n  accordance - 4 p X € O s $ *  1 e 
with t h e  d a t a  f o r  n given i n  Table 7 ,  and i n  accordance with t h e  formula (5.36), 
cos $* changes from 1 t o  approximately 112 f o r  angles of incidence which change 
from 0 t o  ~ 1 2 .  Thus, i f  x is  on t h e  order of 5% and more, f o r  p of an order  of 
30 w e  can disregard a bundle of re f rac ted  rays wi th in  an accuracy of e-3 = 5%. 
I n  t h e  absorption band f o r  X = 311, t h i s  accuracy can be  achieved i n  the  case 
p =: 8.5. For t h e  i n t e n s i t y  of t h e  k z  der iva t ive  of t h e  ray,  we ob ta in  an 
expression which contains the  i n t e n s i t y  of t h e  second d e r i v a t i v e  of order 
(k - 1). This means t h a t  we  can disregard these bundles, i f  w e  disregard t h e  
r e f r a c t e d  bundle. 

I n  t h i s  connection, w e  should note  
t h a t  i t  is  permissible  t o  disregard 
absorption, which w e  have done f o r  t h e  
v i s i b l e  region,  not  only f o r  cloud 
drops, bu t  a l s o  f o r  r a i n  drops. 
a c t u a l i t y ,  as w e  have already noted, 
t he  absorpt ion index f o r  water i n  t h e  
v i s i b l e  region is  on t h e  order of 10-8. 

I n  
0 

- 
Consequently, s i g n i f i c a n t  absorption 
occurs only i n  t h e  case of p on t h e  
order  of lo8,  i .e .  , f o r  spheres having 

Figure 26. I n d i c a t r i x  of Reflected 
Rays i n  the  Band of Maximum Water 
Absorption. 

( l ) I f  $* is the  r e f r a c t i o n  angle,  then the length of t h e  ray path i n  t h e  
drop w i l l  be  2a cos $*, and t h e  path passing along t h e  normal w i l l  be 
z = 2a cos2 a*. 
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a rad ius  of about 10  m. 

I n  accordance with t h e  considerations presented above, we  have computed 
t h e  s c a t t e r i n g  i n d i c a t r i x  of a drop of water i n  a s t rong  absorpt ion band ( fo r  
A = 3 1 ~ ;  m = 1.409 - i 0.1747) .  

W e  have taken i n t o  account only r e f l e c t e d  l i g h t .  This s c a t t e r i n g  i n d i c a t r i x  
i s  shown i n  Figure 26. 
r e f l e c t e d  l i g h t  f o r  a t ransparent  drop (see Figure 19). 

It bare ly  d i f f e r s  from t h e  s c a t t e r i n g  i n d i c a t r i x  i n  

I n  conclusion, let  us study t h e  problem of t h e  c o e f f i c i e n t s  of a t t e n u a t i o n m  
and s c a t t e r i n g  i n  terms of geometric op t i c s .  
following f o r  a t ransparent  and completely r e f l e c t i n g  p a r t i c l e  

It i s  apparent t h a t  w e  have t h e  

R = kp E xai  

For an absorbing p a r t i c l e ,  t h e  a t tenuat ion  c o e f f i c i e n t  a l s o  equals 
.rra2; k = R(1).rra2, a kt = .rra2(l - R ( 1 ) )  ( i n  t he  s p i r i t  of t h e  approximation 

method inves t iga ted  here) .  W e  should recall  t h a t  R(1)  i s  determined by t h e  
formula (5.25). Calculat ing t h e  i n t e g r a l  included i n  t h i s  formula, w e  may f i n d  
t h e  absorption c o e f f i c i e n t  and t h e  s c a t t e r i n g  c o e f f i c i e n t .  For an example t o  
which Figure 26 p e r t a i n s ,  w e  have found R ( 1 )  = 9% and ka = 0.91 .a2 ( the  exact 

value of ka ca lcu la ted  d i r e c t l y  from t h e  formulas given i n  Chapter 2 is 2% l e s s ) .  

P 

CHAPTER V I  I 137  - 
ABSORBING AND FULLY REFLECTING PARTICLES HAVING ANY DIMENSIONS 

§ 1. Coeff ic ients  of Attenuation and S c a t t e r i n g  

The approximation method f o r  l a r g e  par t ic les ,  developed i n  t h e  preceding 
chapter ,  i s  very simple and s u i t a b l e .  However, t h e r e  are several f a c t s  which 
cause some doubt. 
no t  enable us  t o  determine t h e  s c a t t e r i n g  i n d i c a t r i x .  However, a very important 
add i t ion ,  which must be  made t o  t h e  preceding ca lcu la t ions ,  follows from an 
ana lys i s  of t h e  da t a  on t h e  a t tenuat ion  coe f f i c i en t .  

W e  have already noted t h a t  i n  general  geometric o p t i c s  does 

The a t tenuat ion  c o e f f i c i e n t  f o r  t h e  case m = ~0 w a s  tabulated by Gijtz 
(Ref. 55). Employing t h e  t a b l e s  of Bessel funct ions,  Gijtz calculated t h e  
amplitudes of p a r t i a l  waves f o r  d i f f e r e n t  p ,  and then calculated t h e  a t tenuat ion  
c o e f f i c i e n t  according t o  t h e  formulas (2.52). The values  he  obtained are shown 
i n  TqbbLe 1 4 .  

1138 The quant i ty  K ( p )  shown i n  t h i s  t a b l e  i s  r e l a t e d  t o  t h e  a t tenuat ion  - 
c o e f f i c i e n t  by t h e  following r e l a t i o n s h i p  

R - ra9K (p). (6 1) 

I n  accordance with formula (2.52), K(p) is  determined by the  following sum 
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TABLE 14 

1.2 
1 3 0  
1,s 
1,70 
1.80 1,w 
2.00 
3,00 

I a 

0,19 
091 
0,24 
0.27 
0,29 
030 
0,32 
0,48 

I I 

2,290 

2,154 
2,130 
2,150 
2,184 
2,210 
2,172 

2n4 
4 1  O N  
0 2  o m  
O A  0,06 
03 o m  

0.10 8 0,13 
1.0 0.16 
1,l 418 

4,oo 

6,OO 
8,00 

1 0 , ~  
12,oo 
20,00 

5,oo 

I I 

o,s( 
0.80 
0,95 
127 
1,59 
1,91 
3 3  

2.140 
2,090 
2.100 
2,076 
2 M  
2,080 
2,032 

The handbook by Linke presents  a more d e t a i l e d  t a b l e  which i s  in te rpola ted  
over t h e  values  of Ala. 
d i r e c t l y .  
t h e  s c a t t e r i n g  c o e f f i c i e n t  by numerical i n t e g r a t i o n  of t he  Bliimerindicatrix (Ref.56). 
The d a t a  obtained by t h i s  method coincide with t h e  d a t a  of Gijtz wi th in  an 
accuracy of 1.5%. 1 

W e  have given only t h e  values  which are tabulated 
I n  order  t o  provide a cont ro l  f o r  t h e  Gijtz da t a ,  w e  have ca lcu la ted  

For s m a l l  p a r t i c l e s  (p <<1), i n  accordance with formula (4.21), K ( p )  5s 
proport ional  t o  p4(the s c a t t e r i n g  coef f i e i e n t  is inverse ly  proport ional  t o  Ah). 
An increase  i n  K ( p )  with an increase  i n  p gradual ly  decreases,  and K ( p )  i n  t h e  
case p = 1.23 c?; = 5 . 1 )  passes through a maximum. The maximum value of K ( p )  is  

2.294. 
and K ( p )  i n  t h e  case p = 1.66 (A = 3.8) passes through a minimum. 

i s  2.128 a t  t h e  minimuin. 

maximum, a f t e r  which i t  decreases monotonically, s t r i v i n g  t o  uni ty .  

a 
I n  add i t ion ,  with an increase  i n  p, t h e  a t tenuat ion  c o e f f i c i e n t  decreases, 

Its value 
a 

I n  t h e  case p = 2.25 (h = 2.8) , K ( p )  has a second 
a 

However, w e  must note  t h a t  more d e t a i l e d  computations show t h a t  a monotonic 

The absc issa  of t h e  maxima 
decrease i n  K ( p )  a f t e r  t h e  second maximum does no t  occur. I n  a c t u a l i t y ,  t h e  
curve i n d i c a t e s  damped o s c i l l a t i o n s  (see Figure 27). 
K ( p )  are appmximately d i s t r i b u t e d  i n  i n t e r v a l s  around uni ty .  This  
behavior of t h e  curve w a s  ind ica ted  i n  our study (Ref. 4 3 )  (1947 ). It w a s  
obtained from t h e  values  f o r  t h e  f i e l d  E 

sphere i n  t h e  forward d i r e c t i o n ,  which were published i n  t h e  s a m e  year  by 
A. R. Vol 'pert  and A. I. Potekhin (Ref. 57). 

s c a t t e r e d  by an absolutely r e f l e c t i n g  e 

W e  s h a l l  i n d i c a t e  t h e  re la t ionship  which e x i s t s  between t h e  a t tenuat ion  1139 
c o e f f i c i e n t  and t h e  amplitude of t h e  f i e l d  s c a t t e r e d  i n  t h e  d i r e c t i o n  of i nc i -  
dent  rays. I n  order  t o  der ive t h e  corresponding formula, w e  should note  t h a t  

(- l)R i n  t h e  case f3 = 0. If w e  now w r i t e  t h e  f i e l d  E i n  - R(R + 1) 
2 e SR = -9, - 

("Gijtz d i d  n o t  c a l c u l a t e  K ( p )  f o r  p = 0.5. The value w e  have given w a s  
obtained from t h e  Bl i imer  i n d i c a t r i x .  
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t h e  following form 

then from (2.41) w e  r e a d i l y  obta in  the following f o r  AO, assuming that14 = 0: 

(6.4) 

Comparing t h i s  formula wi th  t h e  formula f o r  k(2.52), w e  r ead i ly  obta in  

R = 2Aa Im (Ad. (6.53 

Thus, t h e  imaginary p a r t  of t he  amplitude i n  t h e  forward d i r e c t i o n  determines 
t h e  a t tenuat ion  c o e f f i c i e n t .  

We should note  t h a t ,  i f  w e  select and 4 '  as t h e  fundamental angles ,  and 

(6.5*) 

The r e l a t i o n s h i p  (6.5) must no t  be regarded as a random consequence of t h e  Mie 
formulas. In our opinion, th is  r e l a t i o n s h i p  i s  of fundamental importance. It 
e s t a b l i s h e s  t h e  deep r e l a t i o n s h i p  which e x i s t s  between forward s c a t t e r i n g  and 
at tenuat ion.  I n  essence,  t h i s  re la t ionship  i s  included i n  the  concept of 
a t tenuat ion  i t s e l f ,  and i n  t h i s  sense formula (6.5) is probably very general .  

no t  0 and 4 (see t h e  end of 111, 2), then w e  must w r i t e  formula (6.5) as follows 

R = 2Aa Im (- A?). 

When a plane wave passes through a s c a t t e r i n g  cen te r ,  i t  excites a 
s c a t t e r e d  wave, whose i n t e r f e r e n c e  with t h e  inc iden t  wave y i e l d s  a forward 
wave. 
magnitude of t h e  a t tenuat ion  c o e f f i c i e n t .  It is thus apparent t h a t  t h e  quant i ty  
k must be uniquely r e l a t e d  t o  t h e  amplitude and phase of a wave which is 
s c a t t e r e d  d i r e c t l y  forward, s i n c e  t h e  in te r fe rence  of t h i s  wave with t h e  in- 
c ident  wave k a d s  t o  a t tenuat ion  of t h e  forward wave. The a t tenuat ion  of t he  
wave may be  determined experimentally by comparing t h e  forward wave, a t  a 
s u f f i c i e n t  dis tance behind t h e  p a r t i c l e ,  with t h e  inc ident  wave i n  f r o n t  of t h e  
p a r t i c l e .  The formula (6.5) d i r e c t l y  corresponds t o  t h i s  experimental meaning 
of t h e  a t tenuat ion  concept. Therefore,  i t  must hold f o r  a p a r t i c l e  having any 
form, i f  w e  are only s u f f i c i e n t l y  f a r  from it. 
only f o r  t h e  re la t ionship  between forward s c a t t e r i n g  and the  a t tenuat ion  co- 
e f f i c i e n t .  
p a r t i c l e s  having d i f f e r e n t  forms w i l l  be  t h e  same. 

The latter is at tenuated,  as compared with t h e  inc ident  wave, by t h e  

/140 

This general  property must hold 

Natural ly ,  i t  does n o t  m e a n  t h a t  t h e  s c a t t e r i n g  i n d i c a t r i x e s  of 

W e  should note  t h a t  o r d i n a r i l y  t h e  formula (6.5) does no t  s implify t h e  
ca lcu la t ions  i n  any way. 
problem of l i g h t  s c a t t e r i n g  i s  inves t iga ted  by o the r  methods -- f o r  example, by 
t h e  methods which w e  s h a l l  present  i n  Chapter V I 1  o r  i n  those cases when t h e  
f i e l d  which is s c a t t e r e d  forward has  already been computed. 
presented t o  us i n  t h e  study (Ref. 57). 

However, i t  can b e  s u i t a b l e  f o r  ca lcu la t ing  k when t h e  

This case w a s  
I n  t h i s  s tudy,  t h e  f i e l d  E O ( 0 )  is  

("This means t h a t  w e  have a r r ived  a t  t h e  forward d i r e c t i o n ,  displaced i n  
t h e  xz-plane (Chapter 11). Apparently, t h e  f i e l d  cannot depend on t h e  manner 
i n  which w e  have a r r i v e d  a t  t h i s  d i r ec t ion .  
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designated as 
Eo e- i (kr - ms) A, . 

f ( P I .  
AT 

7r 2a 
The authors present  graphs f o r  t h e  q u a n t i t i e s  c1 (p )  and - = 

With t h e  use of t hese  q u a n t i t i e s ,  k may be  w r i t t e n  as follows: 
4 
P R = 2xaa - - f @) - sin a,. 

For p > 6 with an e r r o r  which i s  less than 1%, w e  have the  following asymptotic 
formula 

R = 2na9(l +?). (6.6) 

I n  Figure 27 w e  present  a graph of K ( p )  f o r  an absolutely r e f l e c t i n g  sphere. 
Up t o  t h e  second maximum, w e  employed t h e  da t a  given by Gatz, s i n c e  t h e  scale 
of curves f o r  CL and f ( p )  is  too s m a l l  i n  (Ref. 57) i n  t h i s  s ec t ion .  The 

k 
behavior of t he  curve given by Gb'tz behind t h e  second maximum is  indicated by 
the  dashed l i n e .  

The o s c i l l a t o r y  na ture  of K ( p )  follows formally from t h e  f a c t  t h a t  t h i s  /141  
quant i ty  may be expressed by rap id ly  o s c i l l a t i n g  Bessel funct ions.  The physical  
cause of t h i s  phenomenon may be found i n  t h e  i n t e r f e r e n c e  na ture  of t he  problem. 
It i s  n a t u r a l  t o  a l s o  expect,  as w a s  noted by Professor  Y a .  I. Frenkel'  i n  1947 
when discussing our study (Ref. 43),  i n  more c a r e f u l  computations the  large- 
scale o s c i l l a t i o n s  which w e  have ind ica ted  i n  Figure 27 are furrowed by a s m a l l -  
scale "ripple" f ' f i n e  s t ruc ture"  of t h e  a t tenuat ion  spectrum) 

! ' 3  e 5 

Figure 27. Attenuation Coeff ic ient  f o r  m = ~0 

The na ture  of the curves f o r  K ( p )  behind t h e  f i r s t  maximum is  similar t o  

(')In a c t u a l i t y  , t h i s  " f ine  s t ruc ture"  w a s  discovered by Houghton and Chalker 

t he  curves f o r  damped o s c i l l a t i o n s .  

f o r  drops of w a t e r  (see V I I ,  1). 
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Up t o  t h e  present  t i m e ,  however, w e  have n o t  discussed t h e  most e s s e n t i a l  
aspect  of the behavior of t h e  curve K(p)  -- namely, i ts asymptotic behavior f o r  
l a r g e  p .  I n  t h i s  case, which occurs i n  the region where the  v a l i d i t y  of apply- 
ing geometric o p t i c s  i s  i r r e f u t a b l e ,  we  f ind  a value f o r  k which is  twice t h e  
value which follows from geometric op t i c s .  An ana lys i s  of t h i s  paradox w i l l  be 
given i n  the  following sec t ion .  

A study of t h e  c o e f f i c i e n t s  of a t tenuat ion  and absorption f o r  f i n i t e  m y  
with allowance f o r  a change i n  t h e  physical  p roper t ies  of matter i n  t h e  s p e c t r a l  
region under considerat ion,  i s  of s i g n i f i c a n t  i n t e r e s t  f o r  several problems. 
For example, t h i s  i s  t r u e  of metals i n  t h e  v i s i b l e  region (see Table 4 ) .  Funda- 
mental s t u d i e s  i n  t h i s  region w e r e  performed by a school of s c i e n t i f i c  photography 
i n  t h e  USSR , which w a s  d i rec ted  by professor  T. P. Kravets. Articles by 
Professor  M. V. Savost'yanova, S. A. Artsybysheva, A. S .  Toportsa, A. T. Asheulova, 
P. V. Meyklyara and o the r s  pr imari ly  dea l  with them. 

1142 

The q u a n t i t i e s  k(h) and k ( A )  (in t h e  v i s i b l e  region) f o r  s m a l l  p a r t i c l e s  
P 

of d i f f e r e n t  substances -- primari ly  metals placed i n  d i f f e r e n t  media -- w e r e  
ca lcu la ted  and measured experimentally i n  these s t u d i e s .  
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Figure 28. Absorption Coeff ic ient  Figure 29. Sca t te r ing  Coeff ic ient  
f o r  P a r t i c l e s  of N a  i n  Ether f o r  P a r t i c l e s  of N a  i n  Ether 

The curves f o r  t h e  c o e f f i c i e n t s  of a t tenuat ion  and s c a t t e r i n g  have sharp 
maxima. 
index i s  s m a l l  (sodium, potassium, s i l v e r ,  and o the r s )  produce narrow bands. 
In Figure 28 w e  present  t h e  curves from (Ref. 58) showing the  behavior of t h e  1145 
absorpt ion c o e f i c i e n t  f o r  sodium p a r t i c l e s  of d i f f e r e n t  dia-  
meters i n  e the r .  Figure 29 shows t h e  behavior of t h e  s c a t t e r i n g  c o e f f i c i e n t  
f o r  t hese  same p a r t i c l e s  ( the q u a n t i t i e s  which are proport ional  t o  these co- 
e f f i c i e n t s  are p l o t t e d  along t h e  ord ina te  axes).  I n  accordance with t h e  ideas  
developed i n  Chapter V,  t h e  s c a t t e r i n g  c o e f f i c i e n t  decreases much more rap id ly  
than t h e  absorption c o e f f i c i e n t  when t h e  p a r t i c l e  dimensions decrease.  

I n  p a r t i c u l a r ,  metals f o r  which a s u b s t a n t i a l  por t ion  of t h e  r e f r a c t i v e  
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The loca t ion  of t h e  absorption maximum i n  t h e  v i s i b l e  por t ion  of t h e  spectrum 
leads t o  b r i g h t  co lora t ion  of a c o l l o i d  so lu t ion .  
however, t h e  absorpt ion curves are primari ly  located i n  t h e  u l t r a v i o l e t  and 
e n t e r  t h e  v i s i b l e  region only s l i g h t l y .  I n  t h i s  case, one cannot expect a 
b r i g h t  colorat ion.  Actually,  i n  t hese  cases M. V. Savost'yanova detected only 
brown shades. With an increase  i n  t h e  p a r t i c l e  dimensions, t h e  absorption 
max imum i s  displaced toward long waves (see Figures 28 and 29). 
conclusion, which w a s  reached a t  t h e  beginning of t h e  computations, w a s  then 
experimentally corroborated. 

I n  t h e  majori ty  of cases, 

This important 

However, w e  should note  t h a t  t h i s  displacement of t h e  maximum can be  
explained i n  q u a l i t a t i v e  terms by considerat ions which f a l l  ou ts ide  of t h e  frame- 
work of t h i s  book. 
and applying t o  them t h e  approximation methods of c a l c u l a t i n g  t h e  chromaticity 
of organic compounds, i n  1946 F. Sh. S h i f r i n  found t h a t  t h e  absorption bands 
of such p a r t i c l e s  must be displaced toward l a r g e  X when t h e i r  dimensions increase.  

Regarding t h e  smallest c o l l o i d  p a r t i c l e s  as l a r g e  molecules 

A conclusion may a l s o  be reached regarding t h e  agreement between theory 
and experiment, based on t h e  curves given i n  Figure 30. 
t h e o r e t i c a l  behavior of absorption f o r  Cu p a r t i c l e s  i n  NaC1.  Curves 2-4 re- 
present  t h e  experimental course of absorption i n  t h e  Cu-NaC1 system, based on 
measurements by S. A. Artsybysheva and A. S. Toportsa. A s  w e  may see, t h e  
experimental curves prec ise ly  transmit t h e  na ture  of t h e  t h e o r e t i c a l  curve. 

Curve 1 gives t h e  

The reader  w i l l  f i n d  more d e t a i l e d  da t a  on these  inves t iga t ions  i n  the  
ar t ic les  of M. V. Savost'yanova (Ref. 58, 59). 

W e  should note  t h a t ,  i n  accordance with formulas (4.12) and (1.12), t h e  
absorption c o e f f i c i e n t  of a s l i g h t l y  conductive p a r t i c l e  i s  proport ional  t o  t h e  
e lectr ical  conduct ivi ty  0. When considerat ions regarding t h e  dependence of 0 on a,  
developed i n  I ,  2, are taken i n t o  account, t h i s  means t h a t  f o r  t h e  smallest 
p a r t i c l e s  k 2, a4, whereas k 2, a3 f o r  l a r g e r  p a r t i c l e s .  
t a i n s  t o  c o l l o i d  systems, which are i l l u s t r a t e d  i n  Figures 29 and 30. 

This apparently per- f144 

W e  s h a l l  discuss  t h e  d a t a  on s p e c t r a l  t ransmit tance of t h e  atmosphere 
before  Chapter V I I .  

§ 2. Asymptotic Value of t h e  Attenuation Coeff ic ient  f o r  Large 
P a r t i c l e s 1  

A s  w e  have seen, p r e c i s e  formulas f o r  t h e  a t tenuat ion  c o e f f i c i e n t  lead t o  
an unexpected r e s u l t .  
p a r t i c l e s  equals 2~ra2. 
on t h e i r  work) found t h e  same asymptotic value ( i n  t h e  case p-t-). They tabulated 
k f o r  drops of water i n  t h e  v i s i b l e  region. This value i s  opposed t o  t h e  value 
obtained when the  problem is  inves t iga ted  by t h e  methods of geometric o p t i c s  -- 
ra2. 

The asymptotic value of t h i s  c o e f f i c i e n t  f o r  l a r g e  
S t re ton  and Houghton (see Chapter VI1 f o r  g r e a t e r  d e t a i l s  

The value of Ira2 i s  given i n  t h e  study by Ruedy (Ref. 60) and many others .  

This same erroneous value i s  given i n  t h e  work by G. Gertner (Ref. 45). 

("According t o  our s tudy ( R e f .  63). 
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Figure 
mental 
N a C l  

W e  must take t h e  f a c t  i n t o  account/l45 
t h a t  Jobs t  (Ref .  61),  who employed 
prec ise  formulas t o  study a n a l y t i c a l l y  
t h e  a t tenuat ion  c o e f f i c i e n t  f o r  m = m ,  

obtained t h e  following formula f o r  l a r g e  
P :  

(6.7) 

where f 2  = 0.228 ... 
Thus, according t o  J o b s t ,  t h e  

asymptotic va lue  equals na2. 

The r e s u l t  obtained by Jobs t ,  how- 
ever ,  i s  erroneous. The e r r o r  may be 
immediately detected i f  w e  compare h i s  
i n i t i a l  formulas with t h e  corresponding 
formulas i n  Chapter 11. Jobs t  simply 
omitted t h e  f a c t o r  2. H e  made t h i s  
change i n  t h e  precise formulas i n  order  

30. Theoret ical  and Experi- 
Curves f o r  P a r t i c l e s  of Cu i n  

- 
t o  ob ta in  t h e  asymptotic value i n  accordance with t h e  requirements of geometric 
op t i c s .  However, t h e  formulas given i n  Chapter I1 are absolutely p rec i se ,  up 
t o  a l l  t h e  c o e f f i c i e n t s  included i n  them. 
a d d i t i o n a l  "normalization", s i n c e  they w e r e  obtained from t h e  general  so lu t ions  
of t h e  Maxwell equations a f t e r  s a t i s f y i n g  a complete system of boundary conditions.  
Thus, t h e  asymptotic value of t h e  s c a t t e r i n g  c o e f f i c i e n t  obtained from t h e  
general  formulas i s  2na2. 

They w e r e  no t  subjected t o  any 

The e r r o r  of Jobs t  must be  kept i n  mind when employing h i s  computations. 

There are a few more inaccuracies  i n  h i s  work. For example, he  ind ica t e s  
t h a t  t h e  maximum of t h e  curve f o r  t h e  a t tenuat ion  c o e f f i c i e n t  occurs a t  p = 2.5, 
whereas i n  a c t u a l i t y  i t  occurs a t  p = 1.2. The asymptotic formula (6.7) which 
he ind ica ted  does n o t  coincide with t h e  formula (6.6) which w e  ob ta in  d i r e c t l y  
from numerical da t a  i n  (Ref. 57). 

W e  s h a l l  show f u r t h e r  on t h a t  t h e  paradoxical va lue  f o r  t h e  c o e f f i c i e n t  of 
a t tenuat ion  by l a r g e  p a r t i c l e s  is i n  a c t u a l i t y  due t o  d iverse  d i f f r a c t i o n  
phenomena which occur here.  
which w e  have s tudied  f a l l s  ou ts ide  of t h e  framework of our usua l  concepts 
regarding d i f f r a c t i o n .  
customary representat ions.  

However, w e  must stress t h e  f a c t  t h a t  t h e  phenomenon 

They l ead  us t o  a c e r t a i n  s i g n i f i c a n t  change i n  these  

Actually,  w e  can usual ly  assume t h a t  d i f f r a c t i o n  phenomena d i s t u r b  t h e  
geometric p i c t u r e  of t h e  f i e l d  a t  d is tances  on t h e  order  of A from t h e  edge of 
t he  body. I n  our problem, t h i s  means t h a t  t h e  por t ion  of t he  f l u x  dis turbed /146 
by d i f f r a c t i o n  phenomena w i l l  be on t h e  order of 2aaA. 
t h i s  d i f f r a c t i o n  dis turbance i n  t h e  case p + m w i l l  s t r i v e  t o  zero as l / p  and, 
consequently, w e  arrive a t  t h e  asymptotic value ind ica ted  by geometric op t i c s .  

The relative value of 
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The c o e f f i c i e n t  2ra2 cont rad ic t s  t h e  geometric o p t i c s ,  I n  order t o  analyze 
t h i s ,  w e  must study i n  g r e a t e r  d e t a i l  t h e  angular i n t e n s i t y  d i s t r i b u t i o n  of 
l i g h t  s c a t t e r e d  by an extremely l a r g e  p a r t i c l e  (p -+ a). 

Based on t h e  fundamental formulas, let  us i n v e s t i g a t e  t h e  i n t e n s i t y  
d i s t r i b u t i o n  of s c a t t e r i n g  f o r  t h e  case of very s m a l l  angles B(B % L), i.e. , 
with in  a c e r t a i n  very narrow cone around t h e  forward d i r ec t ion .  P 

I n  Chapter I11 w e  s a w  t h a t  up t o  R of t h e  order  p, t h e  amplitudes have t h e  
order l/R, and t h e  values  of t h e  angular funct ions do not  exceed R(R + 1) . 
This means t h a t  t h e  o s c i l l a t i n g  t e r m s  of t h e  sums have up t o  R Q p orders  of 
R .  For R which are l a r g e r  than p, they become neglig5bly s m a l l .  This means 
t h a t  f o r  l a r g e  p terms wi th  l a r g e  R play t h e  b a s i c  r o l e  i n  sums f o r  t h e  f i e l d s .  
For l a r g e  R, w e  may apply t h e  approximation formula of V. A. Fok t o  t h e  Legendre 
polynomials contained i n  t h e  funct ions Q and S 

these  funct ions i n t o  account, which are described i n  Chapter 111, w e  obtain t h e  
following a f t e r  simple transformations 

2 

Taking t h e  proper t ies  of R R '  

These formulas may be w r i t t e n  f o r  R >> 1 and B << 1. 
s t i t u t e d  s i n  @ everywhere by 8, and R + & by R .  

W e  have thus sub- 

2 
Subs t i tu t ing  t h i s  expression i n  t h e  sum f o r  E f o r  t he  R S  component of 4 '  

t h i s  sum, w e  ob ta in  
( - 1 Y + q  ( C l +  4 ) - - V 0 ( z t ) } .  JI(23 

zt 

The R t h  component i n  t h e  sum f o r  Ee w i l l  be 

W e  should now recall t h a t  i n  t h e  case p -+ m t h e  amplitudes c and bR i n  /147 R 
t h e  case R < p c o n s i s t  of t h e  sum 1 and t h e  rapidly o s c i l l a t i n g  component 
(within an accuracy of t h e  f a c t o r )  (3.26). 
sum f o r  t h e  f i e l d s  made by t h e  o s c i l l a t i n g  por t ion  ( i n  t h e  case p -+ m o s c i l l a t i o n -  
occurs with t h e  frequency p) w i l l  be s i g n i f i c a n t l y  less than t h a t  made by t h e  
constant  component. 
i n  t h e  amplitudes 

The asymptotic cont r ibu t ion  t o  t h e  

Therefore, w e  can disregard t h e  rap id ly  o s c i l l a t i n g  s e c t i o n  

Thus, f o r  l a r g e  p and (and s m a l l  B ) ,  independently of t h e  electric proper t ies  

("We s h a l l  see f u r t h e r  on (see Chapter VII) t h a t  allowance f o r  t h e  
o s c i l l a t i n g  p a r t  i n  (3.26) ( fo r  t h e  f i e l d s )  y i e l d s  q u a n t i t i e s  whose order is 
lower than those w e  have obtained here  by a f a c t o r  of unity.  
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of t h e  p a r t i c l e s ,  w e  may assume that 

The f i e l d  E h  w i l l  now be  

sin? e E, = Eo )c i lJO(g). 
1-1 

Replacing t h e  sum with respect  t o  Rby t h e  i n t e g r a l ,  we  r e a d i l y  obta in  

We have here  employed t h e  w e l l  known formula 

i tl, (t) dl = d, (2). 
0 

The quant i ty  E w i l l  be 9 

A similar expression is  obtained f o r  E only s i n  9 w i l l  be replaced by cos 4 .  0 ’  

1148 Changing from the  f i e l d s  t o  t h e  i n t e n s i t i e s ,  w e  ob ta in  - 
1, == sin9 Ti, rn = cosapi, ( 6  9 )  

where I designates  t h e  t o t a l  i n t e n s i t y  of s c a t t e r e d  l i g h t  (per u n i t  of s o l i d  
angle) : 

(6.10) 

W e  should note  t h a t  i n  t h e  s c a t t e r i n g  of n a t u r a l  l i g h t  I = 12, i .e.,  t h e  1 
degree of p o l a r i z a t i o n  of s c a t t e r e d  l i g h t  equals zero. This i s  understandable, 
s i n c e  i n  general  f o r  very s m a l l  13 t h e  d i v i s i o n  i n t o  t ransverse  and longi tudina l  
components l o s e s  any meaning. 

The formula which w e  obtained f o r  t he  t o t a l  I coincides exac t ly  with t h e  
formula f o r  i n t e n s i t y  d i s t r i b u t i o n  i n  t h e  case of l i g h t  d i f f r a c t i o n  from a 
c i r c u l a r  hole  ( in  t h e  case of s m a l l  8)  [see ( R e f .  381, page 2171. A graph of 
t h e  funct ion 

F (4 = ( Y T  S I  ( 2 )  

is  shown i n  Figure 31. 
d i r e c t i o n ,  t h e  i n t e n s i t y  of s c a t t e r e d  l i g h t  w i l l  be  

In  t h e  case of z = 0 F(z) = 1, i .e . ,  i n  t h e  forward 

(6.11) 
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The roo t s  of the func t ion  F(z1 and its de r iva t ive  are shown i n  the  f i r s t  
1 column of Table 15. The second column presents  F(z) . 

Figure 31. Graph of F(z)  

The f l u x  of energy contained wi th in  
the  cone, whose angle of opening is 
determined by the  quant i ty  z ,  w i l l  be  

/ 149 TABLE 15 - 

0 8,417 0,0042 0,923 
10,17 0 0,938 

S J a  0,0175 11,62 0,0016 0,945 
7,016 0 0,910 1332 0 0,952 

This i n t e g r a l  may be r ead i ly  
ca lcu la ted ,  i f  w e  employ the  following 
r e l a t ionsh ip  

(6.12) 

The values  of @ ( z )  are shown i n  Table 15. It follows from t h i s  t a b l e  and 
from Figure 31 t h a t  t he  e n t i r e  d i f f r a c t e d  l i g h t  i s  concentrated i n  regions of 
s m a l l  z .  
f o r  example, i n  the  regions z < 6,3 i . e .  , i n  a cone with the  angle of opening 

B* = - . 
(This corresponds t o  small B2), 

The t o t a l  amount of l i g h t  d i f f r a c t e d  by t h e  medium w i l l  be ra2. 

Almost a l l  of the  l i g h t  i s  concentrated, 

All 6 
P 

("The d is tance  between the  roo t s  of F(z) is approximately equal  t o  r. 

(2 ) In  formulas f o r  d i f f r a c t i o n  from the  opening, 2 s i n  - is usual ly  w r i t t e n  

This 
leads t o  the  w e l l  known r u l e  f o r  determining the  rad ius  of coronas (Ref. 62). 

B 
2 

in s t ead  of 8. I n  view of the  f a c t  t h a t  (6.10) is  only v a l i d  f o r  l a rge  p (and 
s m a l l  B ) ,  both expressions coincide.  

(3)The pos i t i on  of t h e  boundary f o r  t he  d i f f r a c t i o n  region is  a r b i t r a r y  t o  
a c e r t a i n  ex ten t .  
I n  t h i s  case, about 80% of the  d i f f r a c t e d  l i g h t  e n t e r s  the  d i f f r a c t i o n  region. 
I n  the  case z = 6 ,  about 90% of t h i s  l i g h t  e n t e r s  t h i s  region. 
t h e  boundary is  determined by the  experiment requirements. 

I n  (Ref. 6 3 )  w e  assumed t h a t  i t  w a s  ho r i zon ta l  when z = 3. 

The pos i t i on  of 
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of t h i s  l i g h t  en te r s  t h e  cone with the  angle of opening B* and with the  mean 
i n t  e n s i  t v  

0' 
mean - p I 

A Thus, wi th in  t h e  d i r ec t ions  ly ing  i n  the  very narrow angle  @*(e* 'L '5; ) , 
the  i n t e n s i t y  of l i g h t  s ca t t e r ed  by an extremely l a r g e  p a r t i c l e  is very g rea t  
(% a4/A2). The t o t a l  amount of l i g h t  s ca t t e r ed  wi th in  t h i s  i n f i n i t e l y  narrow /150 
cone w i l l  be wa2. 
i n  a l l  t he  remaining d i r ec t ions ,  except f o r  t h e  narrow cone d i r ec t ed  forward, 
the t o t a l  amount of s c a t t e r e d  l i g h t  w i l l  equal  sa2. 

The t o t a l  s c a t t e r i n g  coe f f i c i en t  equals  27ra2. Consequently, 

The i n t e n s i t y  d i s t r i b u t i o n  described by formula (6.10) may be  observed 
experimentally i n  t h e  form of coronas around the  p a r t i c l e .  
our ca l cu la t ions  t h a t  the  coronas are one of t he  phenomena which accompany the  
s c a t t e r i n g  of l i g h t  by l a rge  p a r t i c l e s ,  and the  theory of coronas must be 
regarded simply as p a r t  of a more genera l  theory -- t he  theory of l i g h t  s ca t t e r -  
ing by p a r t i c l e s .  

It thus follows from 

Following is  the  e s s e n t i a l  meaning of the  preceding ca lcu la t ions .  The 
a s se r t ion  t h a t  i n  the  case of h + 0 the  i n t e n s i t y  d i s t r i b u t i o n  of s ca t t e r ed  

a 
l i g h t  must change i n t o  the  i n t e n s i t y  d i s t r i b u t i o n  corresponding t o  geometric 
op t i c s  i s  inco r rec t .  This change ac tua l ly  occurs a t  a l l  angles $, except f o r  

t he  angles  $ % . When there  is  an increase  i n  the  p a r t i c l e  dimensions, t he  

devia t ions  from geometric op t i c s  w i l l  no t  vanish,  and w i l l  be concentrated 
wi th in  a more narrow angle,  so  t h a t  the  t o t a l  amount of energy s c a t t e r e d  i n t o  t h i s  
s m a l l  angle  w i l l  equal  t he  t o t a l  amount of energy s c a t t e r e d  i n  a l l  d i r ec t ions  
according t o  the  l a w s  of geometric op t ics .  

Thus, t he  s c a t t e r i n g  i n d i c a t r i x  f o r  an extremely l a rge  p a r t i c l e  w i l l  have 
a very narrow and long "tongue" i n  the  forward d i r ec t ion .  

The energy sca t t e red  contrary t o  the  l a w s  of geometric op t i c s  (6.10) goes 
d i r e c t l y  forward. Therefore,  i f  i t  en te r s  a rece iv ing  device, i t  is not  taken 
away from the  f l u x  i n  a c t u a l i t y  and, i n  accordance with geometric op t i c s ,  
a t tenuat ion  of t he  f l u x  a f t e r  t he  s c a t t e r e d  p a r t i c l e  has  penetrated i t  w i l l  be 
wa2. 

L e t  us i l l u s t r a t e  t h e  r e s u l t s  of the  preceding computations by the  following 
elementary considerat ions.  
s ca t t e r ed ,  as a r e s u l t  of r e f l e c t i o n  and r e f r ac t ion .  
s c a t t e r i n g  coe f f i c i en t .  

The e n t i r e  amount of l i g h t  en ter ing  a p a r t i c l e  is  
This y i e l d s  .a2 f o r  t h e  

However, l i g h t  passing outs ide  of t h e  p a r t i c l e  is a l s o  perturbed due t o  /151 
t he  cont inui ty  of t he  electromagnetic f i e l d .  
per turba t ion  and the  i n t e n s i t y  d i s t r i b u t i o n  on an i n f i n i t e l y  long screen,  which 
causes i t ,  one customarily turns  t o  t h e  approximation d i f f r a c t i o n  theory -- t o  
t he  Rirchhoff theory. 
placed by a two-dimensional screen which is assumed t o  be black,  independently 
of t h e  real electri p rope r t i e s  of t h e  body (Ref. 30). 

I n  order  t o  descr ibe  t h i s  

I n  t h i s  theory,  a real three-dimensional body is re- 

109 



Our p a r t i c l e  (for example, a t ransparent  drop) i s  n o t  a black d i sk  . How- 
ever, le t  us determine what t h e  method usual ly  employed i n  o p t i c s  y i e l d s  f o r  
our problem. 

Since w e  are discussing d i f f r a c t i o n  i n  p a r a l l e l  rays ,  w e  may employ the  
Babinet p r i n c i p l e  here .  
d i f f r a c t e d  by t h e  contours of 
d i f f r a c t e d  by an a d d i t i o n a l  screen,  i .e.,  by a c i r c u l a r  opening having t h e  
r ad ius  a i n  a nontransparent screen. 
i n t e n s i t y  d i s t r i b u t i o n ,  as w e  have already pointed ou t ,  w i l l  p r e c i s e l y  coincide 
with t h a t  which w e  derived by t h e  formula (6.10). Thus, t h e  t o t a l  amount of 
s c a t t e r e d  l i g h t  w i l l  be 2rra2. 

According t o  t h i s  p r i n c i p l e ,  t h e  t o t a l  amount of l i g h t  
our d i sk  w i l l  be t h e  s a m e  as the amount of l i g h t  

The la t te r  w i l l  be rra2, and t h e  angular 

However, we  must emphasize t h e  f a c t  t h a t  these discussions employing t h e  
Babinet p r i n c i p l e  cannot be  regarded as a conclusive answer t o  t h e  problem. 
Since w e  are discussing a paradoxical conclusion, which i s  opposed t o  widely 
he ld  concepts, only a rigorous ana lys i s  of t h e  p r e c i s e  formulas can be regarded 
as conclusive.  Natural ly ,  t h e  quest ion arises as t o  whether t h e  paradoxical 
na ture  of t h e  r e s u l t  i s  due t o  inaccuracies  i n  t h e  discussions.  

Discussions employing t h e  Babinet p r i n c i p l e  are conclusive only a f t e r  t h e  
formula f o r  t h e  coronas is derived by asymptotic ana lys i s  of t he  p r e c i s e  
formulas. Thus, t h i s  ana lys i s  must be regarded a s  proof of t h e  f a c t  t h a t  in  
t h e  case -f 0 and f o r  B + 0 t h e  p r e c i s e  theory f o r  d i f f r a c t i o n  by a sphere 

coincides with t h e  Kirchhoff theory. The f a c t  t h a t  t h e  d i f f r a c t i o n  r e s u l t s  
around t h e  contour do no t  depend on t h e  e lectr ic  proper t ies  of t h e  p a r t i c l e ,  
within t h e  framework of t h e  Kirchhoff theory,  i s  subs tan t ia ted  i n  our p r e c i s e  
ana lys i s  by t h e  f a c t  t h a t  m i s  no t  contained i n  t h e  amplitudes c 

i n  t h e  i n t e n s i t i e s  (which w e  ca l cu la t ed )  of scattered l i g h t  a t  s m a l l  angles.  
Thus, they are independent of t h e  e lectr ic  proper t ies  of t he  p a r t i c l e .  

a 

and bR o r  R 
1152 - 

W e  should note  t h a t  i n  our ca lcu la t ions  w e  confined ourselves t o  investi- 
ga t ing  only t h e  main t e r m  i n  t h e  expansion of t h e  des i red  quant i ty  ( i n t e n s i t y )  
with respec t  t o  Ala. 
general  formula i n  t h e  same approximation. The c o r r e c t i o n  t e r m  w i l l  be  on t h e  
order  of Ala. 

The s c a t t e r i n g  c o e f f i c i e n t  2aa2 is obtained from t h e  

The concept of an absolutely black p a r t i c l e ,  which w e  have discussed he re ,  
does n o t  coincide with t h e  customary concept of a b lack  p a r t i c l e  which i s  
assumed inmeteorology[see,  f o r  example, (Ref. 6 4 ) ] .  There are no black 
p a r t i c l e s  i n t h i s  customary meaning of t he  word -- i .e . ,  p a r t i c l e s  which do n o t  
scatter anything. A p a r t i c l e  from a s t rongly  absorbing substance w i l l  always 
have s c a t t e r e d  l i g h t .  Roughly speaking, t h i s  s c a t t e r e d  l i g h t  w i l l  c o n s i s t  of 
d i f f r a c t e d  l i g h t  and r e f l e c t e d  l i g h t .  Thus, f o r  drops of water i n  t h e  s t ronges t  
absorpt ion band (around 3 u )  , t h e  s c a t t e r i n g  c o e f f i c i e n t  w i l l  be  about 1.11 ra2. 

I n  Figure 32 w e  present  t h e  s c a t t e r i n g  i n d i c a t r i x  of a p a r t i c l e  made of an 
"absolutely black" substance. 
c o r r e c t  form of t h e  curve f o r  a p a r t i c l e  with a given p may b e  obtained from 
Figure 32, i f  t he  angles are decreased, i f  t h e  curve is condensed by a f a c t o r  

The angles i n  the drawing are expanded. The 
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Figure 32. I n d i c a t r i x  of "An Absolutely Black" P a r t i c l e  

of P/T,  and i f  t h e  radius  vec tors  are correspondingly increased. 

/153 The discussion presented here  shows t h a t  i n  t h e  case being s tudied - 
perturbat ions caused by d i f f r a c t i o n  encompass n o t  only a band having t h e  width 
A ,  as is  usual ly  assumed, b u t  deeply pene t ra te  the f i e l d  a t  a d is tance  on t h e  
order  of (fi - 1) a 2. 0.4a from t h e  edge of t h e  p a r t i c l e .  

W e  should a l s o  n o t e  t h a t  "doubling" of t h e  a t tenuat ion  c o e f f i c i e n t  must 
take p lace  no t  only f o r  spheres ,  bu t  a l s o  f o r  p a r t i c l e s  h a v h g  any form which 
are randomly d i s t r i b u t e d .  
waves, but a l s o  f o r  sound waves, waves of mat ter ,  etc. i f  only t h e  p a r t i c l e  
dimensions are s i g n i f i c a n t l y  g r e a t e r  than h and s i g n i f i c a n t l y  less than t h e  
d is tance  t o  t h e  observer.  This follows from the  na ture  of each wave motion. I n  
every case, t h e  a t tenuat ion  c o e f f i c i e n t  w i l l  equal t h e  doubled area of t h e  t rans-  
verse cross  s e c t i o n  of t h e  f l u x  i n t e r s e c t e d  by t h e  geometric contours of t h e  
p a r t i c l e .  

It must t ake  place n o t  only f o r  electromagnetic 

I n  experiments, w e  customarily use t h e  i n t e g r a l  a t tenuat ion  c o e f f i c i e n t  t o  
designate  t h e  f l u x  a t tenuat ion  when i t t p e n e t r a t e s  a s c a t t e r i n g  center  ( i n  
f r a c t i o n s  of t h e  inc ident  f l u x ) .  
s c a t t e r i n g  by an i n f i n i t e l y  l a r g e  p a r t i c l e ?  
on t h e  f a t e  of l i g h t  s c a t t e r e d  wi th in  t h e  cone B*. It cannot be  given i n  
genera l  form, and i s  determined by t h e  s p e c i f i c  experiment conditions.  
example, l e t  us study t h e  following experiment. 
on a p a r t i c l e  with t h e  radius  a. 
d is tance  r from t h e  p a r t i c l e .  

What value must t h i s  c o e f f i c i e n t  assume during 
The answer t o  t h i s  problem depends 

For 
A f l u x  having t h e  width d1 f a l l s  

We may observe an at tenuated f l u x  a t  t h e  

Roughly speaking, a t tenuat ion  of t h e  f l u x ,  which i s  caused by t h e  p a r t i c l e ,  
may be  divided i n t o  two sec t ions :  (1) r a d i a t i o n  s c a t t e r e d  a t  t h e  angle e*, and 
(2) t h e  remaining sec t ion .  They equal  each o t h e r ,  and each of them equals *a2. 

If w e  are s u f f i c i e n t l y  c lose  t o  t h e  p a r t i c l e ,  t h e  por t ion  of t h e  f l u x  

(l)More p r e c i s e l y ,  d is t h e  width of t h e  f l u x  recorded by t h e  receiving device. 
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sca t t e red  at the  angle  8" w i l l  not  be taken away from t h e  t o t a l  f l ux ,  and t h e  
s c a t t e r i n g  coe f f i c i en t  w i l l  approximately equal  ra2. 
he re  have 

It i s  apparent t h a t  w e  

d 
r < p .  (6.13) 

I f r > g  , then the  s c a t t e r i n g  coe f f i c i en t  w i l l  be  g r e a t e r  than Ta2, and will1154 

be c lose  t o  2ra2 i n  the  case r >> - This case customarily occurs. 28" 

Thus, t he  magnitude of t h e  a t tenuat ion  coe f f i c i en t  depends not  only on 
2 ~ a  p = x , but  a l s o  on the  r a t i o  of d / r ,  and may b e  determined i n  the  case p >> 1 

by the  number rl = - d 
28" * 

I f  a l i g h t  f l u x  passes through a system of p a r t i c l e s  ( l aye r  of s o l ) ,  t h e  
observed s c a t t e r i n g  c o e f f i c i e n t  w i l l  be the  average coe f f i c i en t  with respect  t o  
a l l  p a r t i c l e s .  
(< Ta2), s i n c e  l i g h t  which is  r e f r ac t ed  and r e f l ec t ed  i s  a l s o  pr imari ly  d i rec ted  
forward. 
thickness  increases .  

For very t h i n  l aye r s ,  general ly  speaking i t  w i l l  be small 

The s c a t t e r i n g  c o e f f i c i e n t  w i l l  increase  up t o  2 ~ a 2  as the  l aye r  

The statements developed above have been subs tan t ia ted  by t h e  experiments 
of S i n c l a i r  (Ref. 72). H e  found experimentally t h a t  the  a t tenuat ion  coe f f i c i en t  
changes i n  the  way w e  described as t h e  d is tance  t o  the  rece iver  changes.l 

The statements developed above are of s i g n i f i c a n t  importance i n  d i f f e r e n t  
o p t i c a l  measurements, p a r t i c u l a r l y  f o r  o p t i c a l  methods of determining t h e  
moisture of clouds and fogs.  Measurement of the  l i g h t  ex t inc t ion  coe f f i c i en t  
a is f requent ly  used f o r  t h i s  purpose inmeteorology. This c o e f f i c i e n t  may be 
usua l ly  ca lcu la ted  e i t h e r  from the  r a t i o  of the  l i g h t  bundle i n t e n s i t y  before  
(Io) and a f t e r  (IR) a l aye r  of sol having the  thickness  R has been penetrated 

(formula 6.141, o r  according t o  themeteorological  range of v i s i b i l i t y  f o r  t he  
black body [formula (6.15)]: 

(6.14) 

(6.15) 

Here S is  themeteoro logica l  range of v i s i b i l i t y ,  E -- threshhold of br ightness  
con t r a s t  f o r  the  eye. 
the  rad ius  of the  drop a, t h e i r  number p e r  u n i t  volume n f o r  a monodispersed 
cloud or  fog,  i s  usua l ly  es tab l i shed  by the  formula (6.16): 

The r e l a t ionsh ip  between t h e  ex t inc t ion  coe f f i c i en t  and 1155 

( ' )An article by B r i l l u i n  (Ref. 73) comprises the  t h e o r e t i c a l  por t ion  of 
W e  should note  it w a s  submitted t o  t h e  publ i sher  one h a l f  year  t h i s  article. 

later than ours (Ref. 63) ,  and t h a t  B r i l l u i n  only analyzed t h e  special  case of 
an absolutely r e f l e c t i n g  sphere.  W e  should a l s o  add t h a t  Professor  M. I. Yudin, 
i n  a sc ience  seminar at the  Main Geophysical Observatory, proposed using the  
same experimental arrangement as S i n c l a i r  when discussing our art icles (Ref. 46) 
and (Ref. 63). 
published. 
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o = ma? (6.16) 

I f  t he  mean rad ius  of the  particle is known, then the  water content  q may 

9-3m. 4 (6.17) 

values  which are twice as l a rge  as the  co r rec t  values.  The co r rec t  values  can 
be obtained only when d i f f r a c t e d  l i g h t  i s  taken i n t o  account. Usually, w e  may 
simply assume 

be r ead i ly  determined, s i n c e  

It is clear from t h e  above t h a t  formula (6.17) is  wrong. For q, it  y i e l d s  

- -  
a - 2 n d .  

2 
q - 3 -  

i n s t ead  of (6.16) and (6.17). 

(6,. 16*) 

(6 17*) 

I n  the  atmosphere, i n t ense  s c a t t e r i n g  of s o l a r  l i g h t  a t  s m a l l  angles by 
admixture p a r t i c l e s  i s  usua l ly  observed i n  the  form of the so-cal led s o l a r  
aureole .  

The br ightness  of a clear sky a t  d i f f e r e n t  po in ts  of t he  sky is d i f f e r e n t .  
The theory of t h i s  phenomenon must take i n t o  account both Rayleigh s c a t t e r i n g  
by dens i ty  f luc tua t ions ,  and t h e  M i e  e f f e c t  i n  the  atmosphere.1 
approached, t h e  br ightness  of t he  sky increases .  
g rea t  d i r e c t l y  next  t o  t h e  Sun. 
Fesenkova (Ref. 67) ,  V. A. Kratt (Ref. 68) and o thers  have s tudied  t h i s  phenomenon. 
I n  Figure 33 w e  present  the  r e s u l t s  derived from measuring t h e  aureole .  
r e s u l t s  were obtained by V. A. K r a t t  f o r  t h ree  d i f f e r e n t  wave lengths.  The 
angles from the  edge of t he  s o l a r  d i sk  are p lo t t ed  along the absc issa  a x i s ,  and 
the  relative br ightness  of s ec t ions  of the sky (br ightness  of t he  center  of t h e  
Sun f o r  corresponding X i s  assumed t o  be uni ty)  is p lo t t ed  along t h e  ord ina te  
ax i s .  W e  can see t h a t  a t  2' from the  edge of t h e  d i sk  the  br ightness  of the 
aureole  amounts t o  6-10% of br ightness  a t  the  cen te r  of the  sun. 
a l s o  note  t h a t  a t  s h o r t e r  wave lengths  ( l a rge r  than p = &! ) t he  aureole  is 

more in tense .  

As t he  Sun is 
The br ightness  i s  p a r t i c u l a r l y  

N. N. K a l i t i n  (Ref. 65, 66), Ye.  V. Pyaskovskaya- 

These 

We should 

X 

Y e .  V. Pyaskovskaya-Fesenkova (Ref. 67) proposed t h a t  observat ions of t he  /156 
aureole  be used as a method t o  determine the  transmission c o e f f i c i e n t  of t he  
atmosphere p(p < 1). 
br ightness  of d i f f e r e n t  po in ts  i n  t h e  sky as a func t ion  of t he  number of "op t i ca l  
massestt m: 

It is  based on the  formula of V. G. Fesenkov f o r  t he  

B(m)-  mpm. 

. The meaning of t h i s  formula The br ightness  maximum occurs f o r  m = - - 
(which takes  i n t o  account only s c a t t e r i n g  of t he  f i r s t  order)  is very s i m p l e :  
on the  one hand, when m increases ,  t he  a t t enua t ion  of the  f l u x  (Q pm) increases ;  

("The theory f o r  t he  phenomenon, developed by Eksner, i s  not  s a t i s f a c t o r y ,  

1 
max fin P 

s i n c e  i t  does not  take  i n t o  account s c a t t e r i n g  by admixtures [see (Ref. 64), 
page 643. 
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on t h e  o ther  hand, t h e  number of scatter- 
ing  cen te r s  (% m) increases .  I n  (Ref. 
125), Y e .  V. Pyaskovskaya-Fesenkova 
showed t h a t  the br ightness  maximum may 
be observed f o r  any p o i n t s  i n  t h e  sky. 
It is p a r t i c u l a r l y  apparent f o r  the 
aureole.  

and , consequently , p. 

W e  may r e a d i l y  determine m max 

The aureole  br ightness  is pr imari ly  
determined by t h e  number of s c a t t e r i n g  
cen te r s  per  u n i t  of volume. 
i t  is  n a t u r a l  t o  expect t h a t  t h e  atmo- 
sphere t ransmit tance w i l l  decrease as 
t h e  relative aureole  br ightness  increases. 
N. N .  K a l i t i n  (Ref. 70) has  es tab l i shed  

Angles from t h e  Edge of t h e  suns cor re la ted  dependence of exact ly  t h i s  
type 

Therefore, /157 

Figure 33. Solar Aureole. 

(3) - X = 0.77 1-1. § 3. Sca t te r ing  I n d i c a t r i x  

For t h e  case m = a, d e t a i l e d  

(1) - X 0.395 1-1; (2) - X = 0.48 p ;  

computations w e r e  performed by El i imer  (Ref. 56). H e  examined the  following 
seven cases: 

1) p=O,O1; 2) p=O,1; 3) p=0,5; 4) p z 1; 

5) p = 3; 6) p = 5; 7) p = IO. 

I n  Figures 34, 35, and 36 w e  present  t h e  graphs of Bl i imer  f o r  t h e  q u a n t i t i e s  
i and i 

(5). I n  Figure 37 w e  give t h e  complete i n d i c a t r i x e s  f o r  t h e  cases (2 ) ,  (4 ) ,  
(6), ( 7 ) .  (The scale of t h e  curves i s  d i f f e r e n t . )  The p o l a r i z a t i o n  d i s t r i b u t i o n  
of s c a t t e r e d  l i g h t  i s  shown i n  Figure 38. 
which is r e l a t e d  t o  t h e  t o t a l  i n t e n s i t y  I by t h e  following r e l a t i o n s h i p  

[see formulas (2.45); t h e  s o l i d  l i n e  i s  i l l  f o r  cases (2) ,  (7 ) ,  (4 ) ,  l 2 

Table 16 presents  t h e  values  of i, 

(6.18) 

It equals t h e  half-sum of t h e  q u a n t i t i e s  i 

Case (1) w a s  inves t iga ted  i n c o r r e c t l y  by Bli imer .  H e  performed ca lcu la t ions  
according t o  the  Rayleigh formula (4.8), whereas formula (4.19) must be  employed 
f o r  t h e  ca l cu la t ions .  

and i tabulated by Bl i imer .  1 2 

W e  may see from Table 16 and from t h e  f i g u r e s  t h a t  p a r t i c l e s  with p = 0.1 
may be  regarded as s m a l l  p a r t i c l e s  with f a i r l y  good accuracy, i n  agreement with 
formulas given i n  § 2 of Chapter I V .  Pr imari ly  a l l  of t h e  s c a t t e r e d  l i g h t  i s  
d i rec ted  backward. 
i n  an e r r o r  of 5%, t h i s  holds f o r  t h e  case p = 0.5. In  case ( 7 )  , w e  may 
regard t h e  p a r t i c l e  as being large.  Cases (4) ,  (51, (6) are intermediate  
cases. 

Complete polar iza t ion  is observed a t  the  60" angle. With- 
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j ! 5 O  270- * 2500 

Figure 34. I n d i c a t r i x  f o r  m = m, p = 0.1 
125* 120' lf3" 103' 90" @On 10' 60' 

Figure 35. I n d i c a t r i x  f o r  m = m, p = 10 

When p increases  from 0 t o  1, t h e  p o l a r i z a t i o n  maximum decreases and i s  
displaced from 6 = 60' toward l a r g e r  angles.  
82' angle,  and equals 80%. W e  should a l s o  note  t h a t ,  i f  t h e  polar iza t ion  i s  
p o s i t i v e  f o r  a l l  angles f o r  p = 1, then f o r  p = 3 i t  is negat ive i n  two angular . 
i n t e r v a l s .  For p = 5 and 10, t h e  p o l a r i z a t i o n  behavior is more complex. The 1160 
deformation of t h e  p o l a r i z a t i o n  curve when p increases  may be  r e a d i l y  explained. 

Thus, f o r  p = 1 it  occurs a t  t h e  

L e t  us f i r s t  determine t h e  manner i n  which t h e  i n d i c a t r i x  i s  deformed. 
The s c a t t e r i n g  i n d i c a t r i x e s  f o r  p = 5 and 10 are g r e a t l y  extended i n  t h e  forward 
d i r e c t i o n .  I n  a conformance with t h e  statements developed above, w e  have a 
c h a r a c t e r i s t i c  d i f f r a c t i o n  "nose". The s c a t t e r i n g  can be obtained very simply 
h e r e  by performing summation of t h e  r e f l e c t i o n  and d i f f r a c t i o n  e f f e c t s .  It 
follows from Chapter V t h a t  t h e  i n t e n s i t y  of s c a t t e r e d  l i g h t  w i l l  be  constant ;  
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270' 

Figure 3 6 .  I n d i c a t r i x  f o r  m = m, Upper Curve 
Per ta ins  t o  p = 1; Lower Curve Per ta ins  t o  p = 3. 

i w i l l  equal  p 2 / 4  f o r  r e f l e c t e d  l i g h t .  
p = 10 and f o r  p = 5 (for  t h e  angles f3 2 30" i n  t h e  f i r s t  case, and f3 ;G 45" i n  
t h e  second case) t h e  expressions ca lcu la ted  by B l i i m e r  may b e  approximately 
described by t h i s  simple formula. 
angles.  

I n  a c t u a l i t y ,  w e  f i n d  t h a t  both f o r  

Di f f rac t ion  e n t e r s  t he  p i c t u r e  f o r  smaller 
The formula f o r  i w i l l  be: 

(6.19) 

where 
z-psin!. 

I n  order t o  i l l u s t r a t e  t h e  method employed here t o  c a l c u l a t e  t h e  indica- 
trixes, i n  t h e  last  column of Table 16 w e  give t h e  values  of i' calculated 10 
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according t o  formula (6.19) f o r  p = 10. 
approximate value d i f f e r s  from t h e  p r e c i s e  value by 4%. 

W e  should n o t e  t h a t  f o r  B = 0 t h e  

Figure 3 1 .  
Reflect ing P a r t i c l e s  (Cases p = 0.1; 1; 5; lo). 

Complete I n d i c a t r i x e s  f o r  Absolutely 

/ 161 The approximation method indica ted  here is  r a t h e r  rough. It can b e  - 
r e a d i l y  improved i f  w e  combine t h e  f i e l d s ,  ins tead  of combining the i n t e n s i t i e s  
of d i f f r a c t e d  and r e f l e c t e d  l i g h t .  Since both waves are coherent waves, t h e i r  
superposi t ion leads t o  several in te r fe rence  phenomena. 
phenomena w i l l  be most no t iceable  i n  t h e  region of s c a t t e r i n g  angles where t h e  
i n t e n s i t i e s  of both components w i l l  approximately be  t h e  same. 
region of angles 6 is  between 20 and 60". 

These in te r fe rence  

For p = 10, t h i s  

Figure 38. Polar iza t ion  During Sca t te r ing  by 
Absolutely Reflecting P a r t i c l e s  - 

L e t  us now t u r n  t o  polar iza t ion .  Since both r e f l e c t i o n  c o e f f i c i e n t s  equal  
each o ther  i n  t h e  case under consideration, p o l a r i z a t i o n  w i l l  equal zero i n  t h e  
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r e f l e c t e d  bundle. 
see from Figure 38 t h a t ,  i n  accordance with t h e  statements developed above, t h e  
p o l a r i z a t i o n  curve o s c i l l a t e s  around the  absc issa  axis when p increases .  It 
d i f f e r s  most s t rongly  from zero i n  t h e  in te r fe rence  region. 
t h e  region where polar iza t ion  does n o t  equal zero i s  condensed t o  B = 0. 

It w i l l  equal  zero i n  t h e  purely d i f f r a c t e d  region. W e  may 

When p increases ,  

_-- 
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I n  t h e  work by A. R. Vol 'pert  and A. I. Potekhin (Ref. 571, which w e  
mentioned above, t h e  asymptotic amplitude and phase of a f i e l d  which i s  s c a t t e r e d  
i n  t h e  forward d i r e c t i o n  coincide 
d i sk ,  i n  accordance with t h e  ideas  developed i n  § 2.  

with t h e  d i f f r a c t e d  f i e l d  around an opaque 

They a l s o  s tudied  a f i e l d  which is  r e f l e c t e d  backwards. The phase of t h i s  
f i e l d ,  which is  measured from the  plane which is  tangent t o  t h e  sphere from t h e  
s i d e  of t h e  inc ident  wave, o s c i l l a t e s ,  gradually s t r i v i n g  toward i t s  classical 
value m ( the  phase of t h e  inc iden t  wave on the  same plane equals zero).  
f i e l d  amplitude (pertaining t o  t h e  sphere radius)  o s c i l l a t e s  around the  value 
112 corresponding t o  geometric op t i c s .  
r igorous ca lcu la t ion  of t h e  r e f l e c t e d  f i e l d  employing t h e  Kirchhoff formulas, 
which w a s  done by A. I. Potekhin, does not  s i g n i f i c a n t l y  improve t h e  r e s u l t s  as 
compared w i t h  geometric op t i c s .  

The 

It must be pointed out t h a t  t h e  most 

1163 I n  Figure 39 (according t o  [Ref. 711) w e  p resent  t h e  behavior of t h e  .__ 

amplitude obtained according t o  t h e  Kirchhof f formula (curve A) and obtained 
according t o  the  formulas of geometric op t i c s  (dashed l i n e ) ,  i n  addi t ion  t o  a 
p r e c i s e  graph of t h e  amplitude (curve B ) .  W e  can see t h a t  t h e  simple r e s u l t  
yielded by t h e  formulas of geometric o p t i c s  is no worse than t h e  computational 
r e s u l t s  based on the  Kirchhoff formula. 
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10 

98 

LI : --t- 

o 1 2  3 4 5 6 7 6 Y f/Ip 

Figure 39. Fie ld  Reflected from the Sphere m = 00. 

Dashed Line - According t o  Geometric Optics;  
A - According t o  t h e  Kirchhoff formula; B - Precise Curve 

The s c a t t e r i n g  i n d i c a t r i x e s  f o r  absorbing p a r t i c l e s  were recent ly  published 
by Ruedy (Ref. 60). H e  inves t iga ted  t h e  s c a t t e r i n g  of v i s i b l e  l i g h t  by angular 
p e l l e t s .  H e  assumed t h a t  t h e  complex r e f r a c t i v e  index is  constant  over t h e  I164  
e n t i r e  v i s i b l e  region,  and equals m = 2 - ' 2 . 

The i n d i c a t r i x e s  he obtained are shown i n  Figure 40. Curve (a) p e r t a i n s  
7T 7T Tl  3a (b) p = y , (c) p = - and (d) p = - t o  p = - 
8 2 4 -  

a 
C 

b d m a - -  0.5 0 5 0  

Figure 40. Scat te r ing  I n d i c a t r i x  by Small Carbon 
Par  t i d e s .  

Ler us now i n v e s t i g a t e  the  asymmetry of t h e  i n d i c a t r i x e s  rl f o r  completely 
r e f l e c t i n g  p a r t i c l e s  (see t h e  end of Chapter V). 
from Chapter I V  w e  r e a d i l y  f i n d  t h a t  
t h e  l i g h t  which i s  r e f l e c t e d  backwards w i l l  be 112,  forward 112,  and d i f f r a c t e d  

For an extremely s m a l l  p a r t i c l e ,  
= 0.25. For a n  extremely l a r g e  p a r t i c l e ,  
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1 ( i n  u n i t s  Qf na2). Consequently, II = 3 .  The intermediate  values  of t h e  
func t ion  n(p) w e r e  determined by numerical i n t e g r a t i o n  of d a t a  given i n  Table 16. 
For p equal t o  1, 3 ,  5, and 10, we  ob ta in  0.55, 2.81, 3.05, and 2.90, respect ively.  
The probable form of t h e  func t ion  ~ ( p )  i s  shown i n  Figure 41. 

Figure 41. Coeff ic ient  of I n d i c a t r i x  Asymmetry f o r  
m = o 3  

§ 4 .  Radiation1 

The absorpt ion of r a d i a t i o n  by p a r t i c l e s  i s  c lose ly  r e l a t e d  t o  t h e i r  
emission. This problem i s  very important f o r  geophysics, as t rophysics ,  and 
physical  chemistry. 

Transforming t h e  high frequency of s o l a r  r a d i a t i o n  i n t o  t h e  low frequency 1165 
of thermal r a d i a t i o n ,  t h e  admixture p a r t i c l e s  not iceably p a r t i c i p a t e  i n  the  
thermal balance i n  t h e  lower l aye r s .  

I n  t h e  upper l aye r s  of t h e  atmosphere, where t h e  l a r g e  number of dus t  
p a r t i c l e s  i s  due t o  a meteor stream which is continuously trapped by t h e  Earth,  
absorpt ion and emission of r a d i a t i o n  by p a r t i c l e s  i s  one of t h e  most important 
mechanisms cont ro l l ing  t h e  thermal processes.  

I n  accordance wi th  t h e  Kirchhoff l a w ,  t h e  r a d i a t i o n  of p a r t i c l e s  is 
r e l a t e d  t o  t h e i r  absorption. 
l e t  us i n v e s t i g a t e  an i n f i n i t e l y  l a r g e  sphere which i s  black on t h e  i n s i d e  
(radius  R), i n  t h e  cen te r  of which our p a r t i c l e  is located. 

I n  order  t o  e s t a b l i s h  t h e  appropriate  formula, 

The energy f l u x  which f a l l s  on the p a r t i c l e  from an i n f i n i t e l y  s m a l l  area 
dS w i l l  be as follows (BX br ightness  of t h e  a rea ) :  

("Based on our ar t ic le  (Ref.  126). 
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The por t ion  of i t  which is absorbed by the p a r t i c l e  w i l l  be Thus, the  
va2 ka p a r t i c l e  decreases (by t h e  quant i ty  7 dF ) t h e  amount of r ad ia t ion  which the  na X 

area dS t ransmits  t o  p rec i se ly  the  same area located a t  the  o ther  end of t he  
diameter. 

I n  the  s ta te  of thermal equi l ibr ium, t h i s  decrease i n  the  f l u x  w i l l  be 
compensated f o r  by r a d i a t i o n  of t he  p a r t i c l e  on the  s a m e  area. 
p a r t i c l e  br ightness  bA (T) w i l l  be 

Thus, the  

(6.20) 
4 (77 = & 4 (T). 

The br ightness  of a u n i t  area of t he  p a r t i c l e  B* w i l l  be s m a l l e r  by a f ac to r  of 

va  . X 2 

thus y i e l d s  t h e  t o t a l  r ad ia t ion  of a l a rge  black sphere: 

I f  w e  t ake  r e f l e c t e d  l i g h t  i n t o  account, then we must introduce the  f a c t o r  
(1 - R(1))  (see V,  6) i n  formula (6.22). 
i s  computed, i t  is no t  necessary t o  perform de ta i l ed  numerical ca lcu la t ions  of 
t he  i n t e g r a l  f o r  R(1 ) .  
be employed wi th in  an accuracy of 3-4%. 

When the  r ad ia t ion  of l a r g e  spheres 

For example, t he  Gauss formula with three  ord ina tes  may 

L e t  us now tu rn  t o  s m a l l  p a r t i c l e s .  The general  formula (6.20) leads  t o  
several i n t e r e s t i n g  r e s u l t s .  

W e  s a w  above t h a t  a t tenuat ion  is  considerably g r e a t e r  than s c a t t e r i n g  f o r  
s m a l l  particles. 
I n  accordance with (4.12), t he  r ad ia t ion  br ightness  of a s m a l l  p a r t i c l e  may be 
determined by the  following formula 

This means t h a t  a t tenuat ion  is pr imar i ly  due t o  absorption. 

(6.23) 

The br ightness  of a u n i t  area of a small p a r t i c l e  w i l l  be 

The p a r t i c l e  r a d i a t i o n  i s  i so t rop ic .  The t o t a l  f l u x  rad ia ted  by t h e  p a r t i c l e  
per  u n i t  of t i m e  w i l l  be 

f k  4 "kaBk (0. (6.21) 

For l a rge  black p a r t i c l e s  k = va2. W e  thus have a 
= 4 =*aSBk ( r )  = 4 ,a* . xB,. (6.22) 

It is  w e l l  known t h a t  the  t o t a l  r ad ia t ion  of a two-dimensional area dS 1166 
equals dS 9 nB on the  outs ide.  I n  accordance with t h i s ,  t he  l a t t e r  formula 

(6.24) 

("The quant i ty  dFX i s  the  r ad ia t ion  in t ens i ty .  
7 
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Figure 42.  
P a r t i c l e s  (Dashed Line Shows t h e  Functions of Black 

Thermal Radiation of Atmospheric 

Body Radiation).  

I f  t h e  s p e c t r a l  change m i s  s m a l l ,  and i t  may be  approximately assumed 
t h a t  m i s  constant ,  then B*/B 

t o  t h e  wave length A .  
i n  B*/B 

f o r  a s m a l l  p a r t i c l e  w i l l  be inverse ly  proport ional  X A  

w i l l  be more complex. 
With allowance f o r  t h e  s p e c t r a l  behavior of m, t h e  change 

X A  
I n  order  t o  i l l u s t r a t e  t h e  formula ( 6 . 2 4 ) ,  we calculated t h e  thermal 

r a d i a t i o n  of m i s t  p a r t i c l e s  -- s m a l l  drops of water having a r ad ius  of 0 .1  k ~ .  
Figure 42 shows t h e  s p e c t r a l  changes i n  t h e  r a d i a t i o n  br ightness  of m i s t  p a r t i c l e s  
B* (at T = 300') ( so l id  l i n e ) .  For purposes of comparison, w e  present  t h e  s a m e  
curve f o r  r a d i a t i o n  of a black body B (dashed curve). The s c a l e  of t h e  second 
curve is t e n  t i m e s  smaller. 

L e t  us now f i n d  t h e  i n t e g r a l  r a d i a t i o n  of a s m a l l  p a r t i c l e .  It may be  
determined by t h e  general  formula 

aD 

B = f R, (A) B, dk. 
i 

For a s m a l l  p a r t i c l e ,  a simple r e s u l t  may be obtained, i f  we assume t h a t  m i s  
constant.  By employing t h e  Planck formula f o r  r a d i a t i o n  br ightness ,  w e  ob ta in  

0 

The i n t e g r a l  thus included (we s h a l l  designate  i t  by a) may be r ead i ly  ca l cu la t ed ;  
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W 

J 
a 

t' df = I' (5) = 24, 

Q) xz= 1 1,0369.. . 
k-1 

Thus, a = 24.8856... 

Consequently, t h e  br ightness  of t h e  p a r t i c l e  b w i l l  be  

The constant b i s  r e l a t e d  t o  t h e  Stefan-Boltzmann constant  0: 0 

(y i s  t h e  numerical f a c t o r ;  y = 5.7486...). 

The t o t a l  r a d i a t i o n  of t h e  p a r t i c l e  i s  

/168 

(6 25) 

(6.26) 

(6.27) 

W e  have obtained t h e  following important r e s u l t :  t h e  r a d i a t i o n  of s m a l l  
p a r t i c l e s  i s  proport ional  t o  t h e  f i f t h  power of t h e  temperature. 

t h e  r a d i a t i o n  w i l l  be % C T U T ~ .  
is r e l a t e d  t o  the temperature behavior of t h e  r e s i s t a n c e ,  Usually, G 1 f o r  

metals, so  t h a t  here  f pu T5. 

I n  t h e  case of s m a l l  conductive p a r t i c l e s 1  [ i n  accordance with (1.12) ] , 
Thus, t h e  temperature dependence of t h e  r a d i a t i o n  

T 

A t  low temperatures (as compared wi th  t h e  Debye temperature of t h e  body), 
t h e  behavior of G i s  more complex. 

This means t h a t  r a d i a t i o n  of s m a l l  metal p a r t i c l e s  w i l l  be % T a t  low temperatures. 

Theory leads t o  the  dependence CT %L . 
T5 

Based on t h e i r  e lectr ic  proper t ies  , dus t  p a r t i c l e s  are probably c l o s e s t  
t o  semiconductors. For semiconductors which are highly conductive (electrons)  
CT % eA/T  [see, f o r  example, (Ref. 88) 1. 
w i l l  be 5 T6eA/T. 

Radiation of t h e i r  s m a l l  p a r t i c l e s  

For s m a l l  p a r t i c l e s  ( for  constant  m), t h e  Wien displacement l a w  w i l l  hold. 

However, t h e  constant  i n  t h i s  l a w  w i l l  d i f f e r  from i t s  customary value by 
Here 01 and a* are t h e  r o o t s  of the t ranscendental  equations: t h e  f a c t o r  ala*.  

1 --p+..-.; a* 1 = + e-.'. 
a 

This f a c t o r  i s  - = 0.8296... a* 

(')If lm2 + 21 i s  assumed t o  be  constant.  
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P a r t i c l e s  suspended i n  a i r  g ive  up their heat due t o  thermaf conduct ivi ty  I169 
and emission. It may be r e a d i l y  seen that the f i r s t  flux is  k t i m e s  

g r e a t e r  than t h e  second 
temperature, u -- Stefan-Boltzmann 
lower l a y e r s ,  and assumes t h e  value % 1 only on the periphery of t h e  atmosphere. 
In i n t e r s t e l l a r  space,  emission is  t h e  only cause of hea t  loss .  Equilibrium 
between absorpt ion and r a d i a t i o n  determines t h e  temperature of the p a r t i c l e s  
located the re .  

4aT30 
(k' is  t h e  thermoconductivity c o e f f i c i e n t  of a i r ,  T -- 

constant 1. This value i s  'L l o4  i n  t h e  

An increase  i n  t h e  a i r  temperature (per u n i t  of t ime),  causing i t  t o  b e  
d i r e c t l y  heated due t o  r a d i a t i o n  absorption by admixture p a r t i c l e s ,  i s  deter-  

mined by t h e  quant i ty  AT = 0 I ra2n (n i s  t h e  number of p a r t i c l e s  p e r  cm3, c -- 
s p e c i f i c  hea t  of 1 cm3). 

C 
This y i e l d s  about 0.05 - 0 . 1  degree/hour. 

Both estimates p e r t a i n  t o  l a r g e  p a r t i c l e s  (k = r a2 ) .  

t h e  r e l a t i v e  r o l e  of r a d i a t i o n  w i l l  be  s i g n i f i c a n t l y  less. 
heat ing of t h e  a i r  by p a r t i c l e s .  

For s m a l l  p a r t i c l e s ,  

The s a m e  i s  t r u e  of 
a 

I n  conclusion, w e  should note  t h a t  t h e  r a d i a t i o n  of s m a l l  p a r t i c l e s  
determines t h e  flame spectrum t o  a s i g n i f i c a n t  ex ten t .  

CHAPTER V I 1  /170 
TRANSPARENT PARTICLES HAVING ANY DIMENSIONS 

§ 1. Attenuation Coeff ic ient  

L e t  us now analyze s c a t t e r i n g  by a l a r g e  t ransparent  sphere. W e  have 
already discussed t h i s  problem i n  Chapter V, but  s e v e r a l  new f a c t s ,  which 
appeared i n  Chapter V I ,  compel us t o  r e t u r n  t o  t h i s  problem again. L e t  us begin 
by i n v e s t i g a t i n g  d a t a  on tabula t ion  of the a t tenuat ion  c o e f f i c i e n t .  

For a t ransparent  sphere,  m i s  real. I n  t h i s  case, t h e r e  i s  no absorption, 
and t h e  a t tenuat ion  c o e f f i c i e n t  must coincide w i t h  t h e  s c a t t e r i n g  c o e f f i c i e n t .  
W e  s h a l l  show t h a t  t h i s  f a c t  a c t u a l l y  follows from general  formulas. 

For real m,  both argumentsof t h e  c y l i n d r i c a l  funct ions are real. I n  t h i s  case, 
t h e  formulas f o r  amplitudes may be  s u i t a b l y  transformed, s o  t h a t  i n  these  
formulas w e  may separa te  t h e  real  and imaginary p a r t s  i n  a general  form. 
t h i s  purpose, l e t  us s u b s t i t u t e  t h e  funct ion 5 ( p )  by J ,  ( p )  and x ( p )  i n  formulas 

(2.371, according t o  t h e  formula (3.2). 
following f o m  

For 

R R R 
W e  may w r i t e  t h e  amplitudes i n  t h e  

(7.1) c1 = c; it;; br = b; + ib;. 

After  simple transformations of t h e  general  expressions (2.39), w e  ob ta in  
t h e  following formulas: 
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For purposes of b rev i ty ,  w e  have introduced the  following 

x; (PI +I - mx, (PI  4 (mp) 
+; (p> q @PI - m+g (PI 4; (mP) 

% - 
The following expressions are included i n  t h e  formula 

coe f f i c i en t :  

(7.2*) 

not a t  ion  : 

f o r  t he  s c a t t e r i n g  /171 

The corresponding terms i n  the  expression f o r  k w i l l  be: 

W e  can thus see t h a t  i n  a c t u a l i t y  k = k 

The most de t a i l ed  ca l cu la t ions  of the  a t tenuat ion  coe f f i c i en t  have been 

f o r  real  m. 
P 

published f o r  drops of water suspeaded i n  air. They w e r e  performed by S t r a t t o n  
and Houghton (Ref. 74), who assumed t h a t  the  drops were t ransparent ,  d i e l e c t r i c  
p e l l e t s  with m = 1.33. These ca lcu la t ions  w e r e  recent ly  supplemented by 
Houghton and Chalker (Ref. 75). 

The values  given i n  Table 17 w e r e  obtained f o r  the  quant i ty  K(p)[k = .rra2K(p)l. 
A graph showing the  funct ion K(p) is shown i n  Figure 43. 

Figure 43. Sca t t e r ing  Coeff ic ien t  f o r  Drops 
of Water (m = 1.33). 

The dashed l i n e  i n  Figure 43 shows the  i n i t i a l  behavior of t h e  curve 
[according t o  (Ref. 74)]. Along with l a r g e  o s c i l l a t i o n s ,  which are similar t o  
those which w e  noted f o r  m = m y  i n  t h e  sec t ion  p(12-25) the  curve a l s o  has a 
small-scale r ipp le .  Its occurrence may be simply explained by the f a c t  t h a t  
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more c a r e f u l  computations were performed i n  t h i s  s ec t ion .  
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W e  have already indicated,  t h e  reason f o r  t h i s  " f ine  s t ruc ture"  may be  
found i n  t h e  i n t e r f e r e n c e  na ture  of s c a t t e r i n g  by drops. 
are gradual ly  damped, and t h e  l i m i t i n g  value f o r  l a r g e  p a r t i c l e s  i s  21ra2, 

The o s c i l l a t i o n s  K ( p )  

S t r a t t o n  and Houghton paid no a t t e n t i o n  t o  t h i s  f a c t  (see Chapter V I ) .  
Their i n t e r e s t  w a s  d i r e c t e d  toward t h e  a t tenuat ion  minimum which they discovered. 
They assumed t h a t  t h i s  minimum is caused by t h e  t ransmit tance maximum observed 
i n  a r t i f i c i a l  fogs i n  t h e  case A = 0.490 1-1. 

16.0 
162S 
165 
16,75 
17.0 

The l a r g e  maxima and minima occur when p equals  6.15; 11.4; 16.2; 21.0; 
25.5 approximately. A t  t hese  p o i n t s ,  K ( p )  has t h e  following values:  3.92; 1.67;  
2.87; 1.83; 2.50. 
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Besides m = 1.33, t h e  ca lcu la t ions  of K ( p )  w e r e  a l s o  performed f o r  
c e r t a i n  o the r  m. Curves are presented i n  (Ref. 72) f o r  m = 1.33; 1.44; 1.55 
and 2.0. 

3,491, 
3,592 
3,888 
3,722 
3,282 

W e  have shown t h e s e  curves i n  Figure 44. 

The f i r s t  ( l a rge )  maxima occur when p equals 6.15; 4.6; 3.6 and 2.0, 
respect ively.  Their values  w i l l  b e  3.9; 4.1; 4.4 and 4.8.1 When m increases  1173 
( i n  t h e  examined i n t e r v a l  of m v a l u e s ) ,  t h e  p o s i t i o n  of t h e  f i r s t  l a r g e  max imum 
i s  displaced t o  t h e  l e f t ,  and i t s  va lue  increases .  
conclusions r e l a t e d  t o  t h i s  f a c t  i n  § 3. 

W e  have discussed c e r t a i n  

W e  have already previously discussed t h e  important consequences following 

("There are no numerical da t a  on t h e  curves i n  Figure 44 i n  (Ref. 72). 
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from the  doubling of t he  a t t enua t ion  coe f f i c i en t .  

nr d)A 

It is  extremely d i f f i c u l t  t o  c a l c u l a t e  t he  s c a t t e r i n g  c o e f f i c i e n t  f o r  l a r g e  
p a r t i c l e s .  
order  of p .  

The number of terms which must be taken i n t o  account w i l l  be on the  
For example, t h i s  means t h a t  f o r  a cloud drop with r = 10 1.1 we 

would have t o  c a l c u l a t e  and combine 
about 120 terms i n  the  v i s i b l e  region. 
Natural ly ,  t he  quest ion arises as t o  
the  a n a l y t i c a l  ca l cu la t ion  of the  sums 
determining k f o r  p >> 1. Jobs t  (Ref, 
61) made an asymptotic i nves t iga t ion  of 
k f o r  t h i s  case. We have already 
presented the  formula which he obtained 
f o r  absolu te ly  r e f l e c t i n g  p a r t i c l e s .  
W e  should poin t  out t h a t  he a l s o  in- 
ves t iga ted  the  following cases: 

I - 
a) P(nl-1)<P<1; b) P(m-1)<1  <<Pi 

Figure 44. Sca t te r ing  Coeff ic ien t  
f o r  Di f fe ren t  Transparent P a r t i c l e s .  

c)  1<P(m- 1) < p. 

Case (a) is the  region i n  which the  Rayleigh formula i s  appl icable .  The 

This is a r e s u l t  of i nco r rec t  "normalization" of 

This i s  a l s o  inco r rec t .  For case (b) ,  which corresponds 

formula f o r  k, which he obta ins  here ,  d i f f e r s  from the  co r rec t  formula by 
the  f a c t o r  l / 2  (see IVY 1). 
the  fundamental formulas, which w e  have already mentioned. In  case ( e ) ,  he /174 
f inds  t h a t  k = sa2. 
t o  s c a t t e r i n g  by a l a rge  t ransparent  sphere,  Jobst  obtains  the  following a f t e r  
analyzing t h e  general  formulas 

R = xa9p9(m- 1)s. (7.4) 
W e  s h a l l  d i scuss  t h i s  r e s u l t  a t  a later point .  
method. 

W e  s h a l l  obtain i t  by a d i f f e r e n t  

Due t o  t h e  f a c t  t h a t  t he  wave length i s  contained i n  t h e  general  formulas 
only i n  terms of p, w e  would l i k e  t o  poin t  out t h a t  conclusions are frequent ly  
reached regarding the  poss ib le  extension of the  r e s u l t s  derived from d i f f e r e n t  
ca l cu la t ions  f o r  given p t o  any A ,  under the  condi t ion t h a t  the  value of p w i l l  
be maintained (with a corresponding change i n  a). 
v a l i d ,  s i n c e  our formulas depend on X a l s o  through m. We have seen, f o r  
example i n  (Chapter I), t h a t  i n  the  case of w a t e r  m changes g rea t ly  when a 
change i s  made from the  v i s i b l e  region t o  the  in f r a red  region. Therefore,  it 
is  inco r rec t  t o  extend t h e  d a t a  given i n  Table 1 7 ,  per ta in ing  t o  the  case m = 

t o  t h e  in f r a red  region.1 t h e  f a c t  t h a t  s p e c t r a l  
changes i n  m have considerably less inf luence  upon t h e  o p t i c a l  p rope r t i e s  of 
fogs than upon the  p rope r t i e s  of s o l i d  bodies (see page 179). 

These conclusions are in- 

7' 
However, w e  must stress 

The d a t a  presented i n  Table 1 7  give the  dependence of the  fog a t tenuat ion  
s i z e  of i ts particles when the re  i s  a constant  number of c o e f f i c i e n t  upon the  

p a r t i c l e s  per  u n i t  volume. 
dependence of u n i t  volume a t tenuat ion  upon the  p a r t i c l e  values  f o r  a constant 

I n  c e r t a i n  cases, i t  i s  i n t e r e s t i n g  t o  have the  

'L'Several authors  have made t h i s  mistake. I n  a r t i c u l a r ,  t h i s  l i n e  of 
reasoning is widely employed by Gertner i n  h i s  book !(Ref. 45), pages 44-471. 
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mass of suspended matter. 

n % -  , f o r  s m a l l  part icles the  a t tenuat ion  coe f f i c i en t  i n  the  medium ct = kn 
a 

w i l l  be % a3 ,  and f o r  l a rge  particles i t  w i l l  be ct % 1 . This curve is shown 

i n  Figure 45.l 
This means t h a t  fog with p a r t i c l e s  of a corresponding s i z e  is  t h e  most t rans-  
parent .  This f a c t  w a s  f i r s t  ind ica ted  i n  1939 by G. I. Pokrovskiy, and i n  /175 
1947 by Langmuir. 
Ivanov recent ly  (Ref. 76). H e  s tud ied  the  t ransmit tance of kao l in  and c lay  
sediment suspensions i n  d i s t i l l e d  w a t e r .  He found t h a t  f o r  a constant  weight 
concentrat ion of suspended substances,  t he  a t t enua t ion  coe f f i c i en t  has a maximum 
a t  a % h ,  r ap id ly  decreasing toward s m a l l  a and decreasing more slowly toward 
l a r g e  a. 

Since the  number of p a r t i c l e s  per  u n i t  volume is  

3 

a 
The narrow s c a t t e r i n g  maximum occurrfng a t  a % A is  of i n t e r e s t .  

These arguments were corroborated experimentally by K. I. 

L e t  us b r i e f l y  i n v e s t i g a t e  research on s p e c t r a l  t ransmit tance of "pure" 
atmosphere, fogs,  and clouds. 

a i n  'c1 

Research on the  s p e c t r a l  t rans-  
mit tance of a 'lpure'' atmosphere i n  t h e  
v i s i b l e  and c lose  in f r a red  region has 
ind ica ted  t h a t  t h e  t ransmit tance in- 
creases  with an increase  i n  A .  V. A. 
Faas (Ref. 78) assumes t h a t  f o r  
practical purposes the  phenomenon may 
be described very w e l l  by the  following 
s i m p l e  formula with two terms 

4 
a = p + b .  (7.5) 

Figure 45. Attenuation of Vis ib le  According t o  da t a  given by M. M. Staude 
Radiation i n  Fog with a Constant Amount i n  (Ref. 79),  which presents  a de t a i l ed  
of Deposited Water. summary of observat ions on t ransmit tance,  

t h e  constants  a and b w i l l  be [ c i t e d  
from (Ref. 7811 

I b 1 0 , 0 1 8  G. 

When h is subs t i t u t ed  i n  1-1, w e  obta in  a i n  km-1. 

The da ta  presented above r e f e r  t o  the t o t a l  in f luence  of absorpt ion i n  
molecules sca t t e red  by dens i ty  f luc tua t ions  and r e f e r  t o  a t tenuat ion  by ad- 
mixtures. 
must be  eliminated. S. F. Rodionov and h i s  eo-workers (Ref. 80) made a de ta i l ed  
inves t iga t ion  of t he  inf luence  of admixtures upon atmospheric transmittance.  

/176 
I n  order t o  s tudy the  inf luence  of admixtures, the f i r s t  two phenomena 

I n  t h i s  s tudy,  which w a s  performed a t  an a l t i t u d e  of 3-5 km i n  the  mountains, 
i t  w a s  shown t h a t  the assumption t h a t  t he  o p t i c a l  r o l e  of admixtures i s  negl ig ib ly  
small a t  a l t i t u d e s  of more than two kilometers i s  i nco r rec t .  It w a s  found t h a t  

(')In order t o  obta in  ct i n  cm2/g, the  d i g i t s  on the  ord ina te  axis i n  
Figure 45 must be mul t ip l ied  by lo4. 
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a t t enua t ion ,  which depends on the  admixtures a t  a l t i t u d e s  of 3-5 km, is  of the  
same order  as a t t enua t ion  due t o  dens i ty  f luc tua t ions .  

I n  con t r a s t  t o  t he  almost monotonic change i n  t ransmit tance f o r  t o t a l  
a t t enua t ion l ,  a t t enua t ion  by admixtures has a non-monotonic behavior. 
present  t h e  da ta  from one of t h e  observations of S. F. Rodionov i n  Figure 46. 
This curve enables us t o  speak of an a t tenuat ion  band which depends on t h e  
admixtures. 
(Ref. S l ) ,  who s tudied  atmospheric t ransmit tance i n  the  lower l aye r s  with 
a r t i f i c i a l  l i g h t  sources.  The maxima of the Vassy bands are located a t  l a r g e r  
h than are those of Rodionov. This s h i f t  i n  the maximum is  na tu ra l ly  r e l a t ed  
t o  the  f a c t  t h a t  Vassy w a s  deal ing with l a rge r  p a r t i c l e s .  
more d i f fused  than the  Rodionov bands. This may apparently be explained by 
the  more d i f fused  spectrum of the  p a r t i c l e  dimensions below. 
i n  Figure 46 shows t h e  behavior of t he  a t tenuat ion  c o e f f i c i e n t  ca lcu la ted  by 
Rodionov according t o  (Ref. 7 4 ) .  The maximum of k obtained i n  the  experiment 
a t  h = 0.38 1.1 corresponds t o  drops of w a t e r  wi th  a = 0.39 1.1, f o r  which t h e  
dashed curve i s  compiled. The experimental band obtained by Rodionov is s t i l l  
theo re t i ca l .  
may be explained i f  w e  t ake  the  f a c t  i n t o  account t h a t  the  s p e c t r a l  changes of 
m are disregarded i n  t h e  computations of S t r a t t o n  and Houghton. 
changes are taken i n t o  account, the  spectral  curves become sharply cons t r ic ted  
(see the d a t a  of Savost'yanova i n  Figure 29): they acquire  the  na ture  of narrow 
bands. 

W e  

W e  should note  t h a t  similar bands w e r e  a l s o  discovered by Vassy 

The Vassy bands were 

The dashed curve 

This f a c t ,  which seems t o  be incomprehensible a t  f i r s t  glance,  

When these  

Data on the  spectral t ransmit tance of a "pure" atmosphere i n  the  u l t r a -  
v i o l e t  region (0.30 - 0.36 1.1) may be found by t h e  reader  i n  the  work of 
Polyakova (Ref. 97). Along with admixtures and dens i ty  f luc tua t ions ,  absorption 
i n  ozone is  of g rea t  importance f o r  a t t enua t ion  of s o l a r  rad ia t ion .  

/177 

Several  authors  have performed experimental i nves t iga t ions  of the  t rans-  
mit tance of n a t u r a l  and a r t i f i c i a l  fogs and o ther  aerosols .  A survey of t he  
old a r t i c l e s  may be found i n  the  book by Yu. I. Veytser and G. P.  Luchinskiy, 
and the  ar t ic le  by 0. B. Orlov (Ref. 82) o r  i n  (Ref. 45) .  As a r u l e ,  when h 
increases  the re  is an increase  i n  the  t ransmit tance.  Houghton (Ref. 7 4 ) ,  on 
the  o ther  hand, observed the  reverse  behavior,  which i s  apparently r e l a t ed  t o  
t h e  behavior of t he  t h e o r e t i c a l  curve K ( p ) .  

P. Y a .  Bokin, Y e .  M. Brumberg, A. A. Lebedev, and V. I. Chernyayev (Ref. 
83) performed a ca re fu l  study of cloud t ransmit tance.  Great a t t e n t i o n  w a s  paid 
t o  measuring the  dimensions of drops i n  the  cloud. 
conclusion t h a t ,  i n  con t r a s t  t o  t h e  case of m i s t ,  t h e  use of i n f r a red  waves has 
no advantage over t he  use of v i s i b l e  waves i n  a fog. 

inc ident  l i g h t  i n t e n s i t y  I [according t o  Khvostikov (Ref. 23)] .  Curve 1 

per t a ins  t o  a fog with the  drops a = 8 1.1 and curve 2 p e r t a i n s  t o  drops with 
a = 9 1.1. 
w e r e  obtained (water content w a s  almost the  same i n  both cases) .  

The authors reached t h e  

Figure 47 presents  t h e  
/178 da ta  which they obtained f o r  t he  r a t i o  of passing l i g h t  i n t e n s i t i e s  I t o  - 

0 

In  the  case of almost i d e n t i c a l  drops,  d i f f e r e n t  s p e c t r a l  dependences 
S i m i l a r  

(')A s m a l l  d i s t o r t i o n  of the  smooth behavior may be observed between 0.5 - 
0.6 1.1. 
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contradict ions w e r e  a l s o  discovered when t h e  experimental d a t a  of o ther  authors  
w e r e  compared. 

l ed  
5 -  

An ana lys i s  of t h e  problem, which I. A. Khvostikov performed (Ref 23) , 
him t o  t h e  conclusion that i n  fogs,  along wi th  drops having a r ad ius  of 
10 v ,  t h e r e  is a l a r g e  number of submicroscopic drops (radius  of about 0.1 v) ,  

whose number and dimensions cannot be  cont ro l led  by ordinary methods. 
i n  t h i s  uncontrol lable  component of t h e  fog leads t o  an apparent cont rad ic t ion  
i n  t h e  d a t a  of d i f f e r e n t  authors.  
l ack  of agreement between observat ional  da t a  and theory i n  several cases. 

A change 

It is apparently a l s o  the  reason f o r  t h e  

Figure 46. Band of Attenuation by Figure 47. Spec t ra l  Transmittance of 
Admixtures i n  A i r .  Fogs 

I n  order  t o  determine the  t ransmit tance of d i f f e r e n t  hydrometeors, i t  is 
advantageous t o  introduce t h e  magnitude of t h e  ray path i n  t h e  medium, over which 
its i n t e n s i t y  decreases by a f a c t o r  of e. 
free path of r a d i a t i o n ,  and s h a l l  designate  i t  by R. 
c o e f f i c i e n t  i n  t h e  medium, and n be  t h e  number of p a r t i c l e s  per  u n i t  volume. 
It is  apparent t h a t  

W e  s h a l l  cal l  t h i s  quant i ty  t h e  mean 
L e t  01 be t h e  a t tenuat ion  

- /179 

(7.6) 
R = - = -  1 1  

Q kn' 

For clouds,  fogs,  and r a i n ,  i n  t h e  v i s i b l e  region w e  have 

(7.6*) 

Here n is given i n  , a -- p a r t i c l e  r ad ius  i n  cm,  0 -- dens i ty  i n  g/cm3, q -- 
water content i n  
about 5 - 10 m. 
hydrometeors : 

and R i s  given i n  cm. The values  of R f o r  clouds are 
The values  of R are given below i n  meters f o r  d i f f e r e n t  

Fog .............. 510 Moderate Rain ...... 1135 
Thick Fog.... .... 590 Strong Rain......... 620 

Summer Rain ..... 1075 Showers........... 180 - 65 
Fine Rain...... . 790 Very Strong Rain..... 380 
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W e  should note  t h a t ,  out  of t h e  hydrometeors inves t iga ted ,  moderate rain is t h e  
most t ransparent .  

The mean f r e e  paths  of r a d i a t i o n  i n  t h e  media are proport ional  t o  t h e  
meteorological range of v i s i b i l i t y  S i n  them ( V I ,  2) :  

S = R l n ( l  +f) .  
The thickness  of t h e  medium l a y e r ,  measured i n  R, i s  ca l l ed  i t s  o p t i c a l  thick- 
ness.  

When making a t h e o r e t i c a l  i n t e r p r e t a t i o n  of t h e  o p t i c a l  p roper t ies  of fogs,  
one sometimes f i n d s  an analogy between t h e  behavior of fogs and t h e  behavior of 
shee t s  of w a t e r  having a thickness coinciding with t h e  thickness  of a l aye r  of 
"deposited water" i n  fog (Ref. 84). This analogy is  inco r rec t .  I n  a c t u a l i t y ,  
due t o  t h e  presence of a l a r g e  number of phase boundary su r faces ,  on which 
r e f l e c t i o n  and d i f f r a c t i o n  occur,  t h e  o p t i c a l  p roper t ies  of fogs and s o l i d  shee t s  
are completely d i f f e r e n t .  Thus, f o r  example, i t  follows from Table 7 t h a t  a 
sheet  of water having a thickness  of 10 p a t t enua te s  r a d i a t i o n  a t  X = 3 p by 
a f a c t o r  of e7a33 = 1525 whereas t h e  equivalent l a y e r  o fa  cloud (equalling 10 m 
a t  q = 1 g/m3, R = 6.6 ml) a t tenuates  t h e  f l u x  by a f a c t o r  of e1s5 -4.5 i n  a l l ,  
i .e.,  i t  is  340 t i m e s  weaker. It i s  a l s o  important t o  note  t h a t  t h e  s p e c t r a l  
changes of t h e  sheet  proper t ies  take place incomparably more in tense ly  than t h e  
changes i n  fog. 

A s  compared with t h e  tremendous changes i n  t h e  t ransmit tance (l/a) f o r  /180 
shee t s  during a change from t h e  v i s i b l e  region t o  t h e  i n f r a r e d  region (by a 
f a c t o r  of 
unchanged (they can change by no more than a few times).  

Q, l o b ) ,  i t  can be assumed t h a t  t h e  t ransmit tance of fogs i s  p r a c t i c a l l y  

I f  w e  are deal ing with a s m a l l  fog l aye r ,  so  t h a t  i t s  o p t i c a l  thickness 

0 

(T) is  small, t h e  r a d i a t i o n  i n t e n s i t y  a f t e r  pene t ra t ing  t h e  l aye r  w i l l  be 
I = I e - T ,  and t h e  r e l a t i v e  a t tenuat ion  w i l l  be  = T .  I f  t h e  fog mass i n  a 

column having t h e  c ros s  s e c t i o n  1 cm2 is  M y  then T = k - = k M, where k 

r a t i o  .of t h e  drop a t tenuat ion  c o e f f i c i e n t  (k) t o  i t s  m a s s  (mol .  
t h e  quant i ty  K = 7 , w e  may f i n d  t h e  following: 

IO M 
is  t h e  mo 0 0 

By employing 
k 

Here d is t h e  dens i ty  of t h e  p a r t i c l e s .  0 

For l a r g e  p a r t i c l e s  i n  any s p e c t r a l  region,K = 2 and ko = - - - . For 2d0 a 

example, t h i s  means t h a t  f o r  fog with a = 3011 ( f o r  those X f o r  which w e  may 
assume t h a t  t h e  p a r t i c l e s  are very l a rge )  w e  ob ta in  k = 500 cm2/g. 

l a y e r  of t h i s  fog having a thickness  of 10 m with a w a t e r  content of 0.25 g/m3, 
M = 0.25 10-3 g/cm2 and T = 0.375. 

For a 0 

(')It is assumed t h a t  t h e  drop radius  equals 1011. 
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For s m a l l  absorbing p a r t i c l e s  we  r e a d i l y  obta in  the following from formula 
(4.2) : 

(7.7*) 

- -  
Suns  I 

I ma+ 2(ade * ko = 

It is  i n t e r e s t i n g  t o  note  that ,  i n  c o n t r a s t  t o  t h e  case of s m a l l  absorbing 
p a r t i c l e s ,  k 0 
t o  f i n d  t h e  funct ion k ( A )  f o r  w a t e r .  The curve obtained has  maxima a t  3 1.1 and 

6 1.1 and rises beyond 11 1.1, s i n c e  its form is pr imar i ly  determined by the  form 
of t h e  curve x(A). 

t o  determine t h e  va lue  of k 

containing t h e  a t tenuat ion  maxima -- i t  i s  necessary t o  t a b u l a t e  K(p). 
behavior of the curve K(p) may be  found, with an accuracy which i s  s u f f i c i e n t  
f o r  several problems, by employing the r u l e  of s i m i l a r i t y  (see 5 3) , if (m - 1) 
is s m a l l  (< 1). For w a t e r ,  f o r  A = 10  v ,  m = 1.208 - i 0.056. Omitting t h e  /181 
small imaginary p a r t  of m y  by employing t h e  r u l e  of s i m i l a r i t y  w e  f i n d  t h a t ,  
f o r  m = 1.21, the extremums K(p) occur when p equals  9.5; 17.6; 25.7 and 33.4. 
Approximate ca lcu la t ions  of K(p) y i e l d  t h e  following: 3.64; 1.65; 2.70 and 1.84. 
The values  a t  t h e  minimums p r a c t i c a l l y  coincide wi th  t h e  values  i n  t h e  case 
m = 1.33. The maxima are located somewhat lower. 

does no t  depend on t h e  p a r t i c l e  dimensions. W e  may employ Table 7 

0 

For thermal r a d i a t i o n  (A = 101.1)~ ko = 640 cm2/g. I n  order  

i n  t h e  region of average p -- i .e.,  i n  t h e  region 0 
The 

Figure 48. Coeff ic ien ts  of Attenuation, Sca t t e r ing ,  and 
Absorption of Thermal Radiation by Drops of Water 

Curve 1 i n  Figure 48 shows K ( p ) ;  curve 2 -- the smoothed behavior of K(p); 
curve 3 -- t h e  behavior of K (p) ( s c a t t e r i n g  c o e f f i c i e n t  i n  f r a c t i o n s  of s a 2 ) ;  

curve 4 -- t h e  behavior of K (p) (absorption c o e f f i c i e n t  i n  f r a c t i o n s  of sa2) .  

For ko, i n  t h e  case A = 10 1.1 and do = 1 g/cm3, w e  f i n d  

P 
a 

I f  w e  smooth ou t  the curve f o r  K(p) behind t h e  main maximum, w e  f i n d  t h e  follow- 
i n g  values  of r a d i a t i o n  a t tenuat ion  with A = 10 1.1 
p a r t i c l e s  having d i f f e r e n t  r a d i i :  

i n  monodispersed fogs with 
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a i n p  .... 0 4,8 9.6 14,4 19,2 24 32 
k,iin~#~/g 640 700 1900 1900 1300 800 500 

For a > 30 p, t h e  va lue  is ko 2~ cm2/g. 

The problem of t h e  t ransmit tance of fogs f o r  thermal r a d i a t i o n  is  c lose ly  1182 
r e l a t e d  t o  t h e  problem of changes i n  t h e  r a d i a t i o n  balance of t h e  Ear th ' s  
sur face  when t h e r e  are r a d i a t i o n  fogs. 
change i n  t h e  balance R w i l l  be t h e  following f o r  small fog thicknesses 

It may be r e a d i l y  shown t h a t  t he  relative 

where a is  t h e  absorpt ive power of t h e  fog, and r is i t s  r e f l e c t i v i t y .  These a 
values  may be ca lcu la ted  by t h e  d a t a  which w e  have given above f o r  K(p) i n  t h e  
case h = 10 1-1. We thus f i n d  t h a t  t h e  r e f l e c t i v i t y  r i s  10 t i m e s  smaller than 
t h e  absorpt ive power of t h e  fog a The ca lcu la t ions  show t h a t  f o r  fogs with 

a < 14 1-1 ( a  

f ormula 

a' 
+ r )  approximately equals -- 6W, where W i s  t h e  amount of deposited a 

water i n  a given l a y e r  of fog per  g/m 2 . W e  thus have the  following simple 

It is  of i n t e r e s t  t o  note  t h a t  t h i s  phenomenon is  independent of t h e  fog 
s t r u c t u r e ,  i f  it only contains p a r t i c l e s  with a > 14 1-1. 

V. V. Shuleykin, A. A. Gershun and o the r s  s tud ied  s c a t t e r e d  l i g h t  i n  t h e  
sea. Even i n  1921 (Ref. 85) V.  V. Shuleykin had noted the s i g n i f i c a n t  inf luence 
of very l a r g e  p a r t i c l e s  upon t h e  behavior of a l i g h t  f l u x  i n  t h e  sea. I n  a work 
published i n  1923 (Ref. 86),V. V. Shuleykin presented the  r e s u l t s  derived from 
measuring s c a t t e r i n g  i n  seas. For two years  he measured s c a t t e r i n g  a t  d i f f e r e n t  
depths (Ref. 87) .  It w a s  thus found t h a t  t h e  s c a t t e r i n g  c o e f f i c i e n t  decreases 
with depth. 
layers .  V. V. Shuleykin a l s o  noted t h e  value of t h e  o p t i c a l  c h a r a c t e r i s t i c s  
f o r  studying sea cu r ren t s  and t h e i r  transformation. 
a t  a la ter  t i m e  N. N. K a l i t i n  developed a similar concept regarding o p t i c a l  
methods of studying transformation of air  masses [ t h e  method of l'color tempera- 
ture", and o the r s  (Ref. go)] . 

This may b e  explained by t h e  higher  contamination of t h e  upper 

W e  should poin t  out t h a t  

A. A. Gershun s tudied  t h e  s p e c t r a l  behavior of the a t tenuat ion  c o e f f i c i e n t  
i n  sea w a t e r  [(Ref. 91) and (Ref. 92)].  The experimental curves (1, 2, 3 i n  
Figure 49) reveal a p a r a l l e l  behavior with t h e  t h e o r e t i c a l  curves (curves I, 

accordance wi th  t h e  d i f f e r i n g ,  probable composition of samples 1, 2 ,  3).  
/ 183 11, 111; they w e r e  calculated f o r  t h r e e  d i f f e r e n t  p a r t i c l e  dimensions, i n  - 

Linke and Borne experimentally s tud ied  t h e  s p e c t r a l  t ransmit tance of haze 
from a r t i f i c i a l  fogs (NH4C1, ladanum, soo t ,  tobacco smoke, and o the r s )  (Ref. 93). 

Assuming t h a t  k % aXX-", they found t h a t  f o r  t h e  v i s i b l e  s e c t i o n  i n  dusty a i r  
one can use t h e  general  curve f o r  t h e  dependence of x and a on a (Figure 50). 
This curve represents  t h e  averaging of t h e i r  measurements f o r  d i f f e r e n t  smokes. 
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According t o  t h e i r  da ta ,  fogs t ransmit  
a 

4JfOU c 
a, 
'I4 
V 

.ri 
r(.l 

a, 
0 
V 

4-1 (0 

Figure 4 9 .  Spect ra l  Transmittance f o r  
Admixtures i n  Sea Water. 

in a n e u t r a l  m a n n e r .  

\ 
\ 
\ ': 

I184  W e  should poin t  out t h a t  these  da ta  were c l eve r ly  employed by V. G. - 
Fesenkov r ecen t ly  t o  determine the  measurements of p a r t i c l e s  which remained i n  
the  atmosphere a f t e r  t he  Tungusskiymeteorite burned up (Ref. 9 4 ) .  According 
t o  V. G. Fesenkov, t he  p a r t i c l e  rad ius  i s  Q lom4 cm. 

§ 2. Geometric Optics of a Sphere as the  Limiting Case of 
Di f f rac t ion  

I n  Chapter V we  inves t iga ted  s c a t t e r i n g  by a l a r g e  sphere using the  
methods of geometric op t ics .  
previously inves t iga ted  i n  the  f a c t  t h a t  the formulas i t  contains  w e r e  no t  
separated from the  general  formulas of Chapter 11, but  were obtained d i r e c t l y  
from the  l a w s  of geometric op t ics .  

This chapter ' d i f f e r s  from a l l  of t he  chapters  

However, i n  p r inc ip l e  i t  is  very important t o  show t h a t  these  formulas are 
contained i n  the  general  formulas. This i s  the  purpose of the  present  sec t ion .  
We s h a l l  show t h a t  geometric op t i c s  of a sphere comprises the  l imi t ing  case 
( fo r  p + m) of the  general  d i f f r a c t i o n  theory. 
coe f f i c i en t ,  where f o r  p + m the  passage t o  the  l i m i t  of t he  precise value i n t o  
a value corresponding t o  geometric op t i c s  does not  occur,  t h i s  passage t o  the  
l i m i t  occurs f o r  the  i n t e n s i t y  of s ca t t e r ed  1 i g h t . l  

I n  con t r a s t  t o  t he  a t tenuat ion  

L e t  us i nves t iga t e  the  case of a l a rge  nonabsorbing particle -- a case 
which represents  t h e  primary d i f f i c u l t y  i n  ca l cu la t ions ,  s i n c e  i t  is necessary 
t o  take  i n t o  account s eve ra l  bundles. Apart from i t s  p r inc ipa lva lue ,  an 
asymptotic i nves t iga t ion  of t he  formulas f o r  i n t e n s i t y ,  which we  s h a l l  give 
below, is important f o r  understanding the  s t r u c t u r e  and phys ica l  content of the  
general  so lu t ion  f o r  l a r g e  p. 

. 

(l)Except f o r  the  angles (and t h e  sec t ions  c lose  t o  them) where the  
formulas of geometric op t i c s  can be used. 
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The problem which we s h a l l  dea l  with has already been s tudied  i n  one, 
comparatively l i t t l e  known work of Debye f o r  the  case of a cy l inder  (Ref. 95). 
I n  t h i s  s tudy ,  Debye inves t iga ted  the  asymptotic form of the formulas f o r  a 
d i f f r a c t e d  f i e l d  i n  the  case of the  cyl inder .  

I n  view of the  l i n e a r i t y  of t he  M a x w e l l  equations (1.3) , w e  must t r y  t o  
f ind  t h e i r  so lu t ion  i n  the  form of an i n t e g r a l  whose kerne l  can be determined 
from the  boundary conditions.  This leads t o  the  double Fourier  i n t e g r a l ,  
ins tead  of the  series (2.41). 
the Bessel func t ions ,  Debye determined t h e  asymptotic value of the  double 
in t eg ra l .  

cyl inder  , and the  d i f f r a c t e d  f i e l d  around an absolu te ly  r e f l e c t i n g  o r  r e f r a c t i v e  
cyl inder  s t r i v e s  t o  those values which follow from geometric op t i c s .  I n  c e r t a i n  
d i r ec t ions  -- namely 
s t r i v e s  t o  i n f i n i t y .  

By employing approximation representa t ions  f o r  /185 

H e  found t h a t  t h e  quant i ty  p = s t r i v e s  t o  i n f i n i t y  f o r  a x 

i n  the  d i r ec t ions  of the  rainbows -- t he  f i e l d  amplitude 

L e t  us i nves t iga t e  a s i m i l a r  problem f o r  the case of a sphere.2 W e  s h a l l  
follow our previous study i n  (Ref. 43) (1947). 

L e t  us t u r n  t o  formulas (3.26) f o r  t he  amplitudes cR and b i n  the  case of 

l a rge  p.  A very s i m p l e  meaning may be a t t r i b u t e d  t o  these  formulas, i f  w e  
search f o r  an analogy with geometric op t ics .  I n  t h i s  sense,  w e  s h a l l  regard 
the  expression (3.26) as the  angle a t  which a ray  f a l l s  on a sphere. W e  should 
recall t h a t  T , i n  accordance with t h e  formula (3.23) and i n  accordance with 

the  f a c t  t h a t  1 I: R 4 p, changes from n 2  t o  0 ,  and consequently the  angle 

- -  T~ changes from 0 t o  n2. 2 
t he  ray ,  s i n c e  T and T are re l a t ed  by the following equation: 

R 

0 

n n I n  t h i s  case,  - 2 - T1 is the  r e f r a c t i o n  angle of + 

1 0 
cos T,, = m cos T,, (7.8) 

which coincides with the  r e f r a c t i o n  l a w .  Di f fe ren t  rays  f a l l i n g  on the sphere 
correspond t o  d i f f e r e n t  components i n  the sums. Components with s m a l l  numbers 
R correspond t o  rays  with s m a l l  angles of incidence which are c lose  t o  zero. 
Rays which are tangent t o  t h e  sphere correspond t o  components with the  numbers 
R around p. Viewed i n  t h i s  way, i t  is understandable t h a t  f o r  l a rge  p our sums 
are truncated a t  R 'L p.  Rays passing outs ide  of t h e  sphere correspond t o  terms 
of the  sum with R p .  The phys ica l  meaning of the  f a c t  t h a t  our sums are 
t runcated a t  R 'L p i n  the  case p >> 1 may be  found i n  t h i s  f a c t .  

The q u a n t i t i e s  E~ and E which were previously derived now acquire  a 2 
simple meaning. 
f o r  E and E as follows: 

By employing t h e  r e f r a c t i o n  l a w ,  w e  may rewrite the  formulas /186- 
1 2 

("For g r e a t e r  d e t a i l s ,  see our a r t i c l e  (Ref. 43). 

("This case is considerably more complex than the  case inves t iga ted  by 
Debye, s i n c e  t h e  angular dependences of par t ia l  waves are very s i m p l e  f o r  a 
cyl inder .  
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Making a comparison with the  formulas (5 .0 ,  wexan  see t h a t  t he  q u a n t i t i e s  
E, and E, are t h e  ordinary Fresnel  r e f l e c t i o n  c o e f f i c i e n t s  f o r  f i e l d s  with an 

1 
.L L 

o s c i l l a t i o n  normal t o  ( E ~ )  and along ( E ~ )  of t he  plane of incidence. 

It follows from formulas (7.9) t ha t ,  i n  terms of absolute  magnitude, t h e  
q u a n t i t i e s  zl and E~ are less than uni ty  over t h e  e n t i r e  i n t e r v a l  considered 

f o r  t h e  numbers R. 

of series i n  t e r m s  of t he  q u a n t i t i e s  i e  e-2impfl 

L e t  us now represent  our amplitudes cR and bR i n  t h e  form 

2 1 and i e  e - z i m p f l .  After  s i m p l e  

For purposes of brev&ty, w e  have introduced t h e  following nota t ion  here  

I n  a similar way, w e  obtain 

(7.10) 

(7.11) 

I n  t h i s  form, t h e  formulas f o r  t h e  amplitudes cR and bR i n  t h e  case of 

l a rge  p acquire  a simple and c l e a r  meaning. 

A p a r a l l e l  bundle of l i g h t ,  f a l l i n g  on a drop, i s  s c a t t e r e d  by i t  
i n  d i f f e r e n t  ways. P a r t  of t h e  l i g h t  passing outs ide  of t h e  drop contours 

ou te r  surface.  P a r t  of i t  penet ra tes  r i g h t  through, as though penet ra t ing  
through a l ens ,  undergoing two r e f r a c t i o n s ;  p a r t  of i t  undergoes r e f r a c t i o n ,  
i n t e r n a l  r e f l e c t i o n ,  r e f r a c t i o n  again,  e t c .  

/187 is  d i f f r a c t e d  by t h e  drop contours.  The o ther  p a r t  is re f l ec t ed  from the  - 

The s t r u c t u r e  of the  p a r t i a l  wave amplitude according t o  formulas (7.10) 
and (7.11) exac t ly  coincides with t h i s  physical  p ic ture .  Unity i n  the  
parentheses corresponds t o  d i f f r a c t e d  l i g h t .  W e  have seen above ( V I ,  2) t h a t  
i n  t h e  forward d i r e c t i o n  it leads t o  a formula f o r  coronas and t o  doubling of 

("The formula f o r  cl is usua l ly  w r i t t e n  with a minus s ign.  W e  have used 

t h i s  s i g n  i f  w e  change from t h e  angles T 
r e f r ac t ion .  

and T 0 1 t o  the  angles  of incidence and 
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t he  a t tenuat ion  coe f f i c i en t .  A t  a later poin t ,  w e  s h a l l  show t h a t  i n  the  back- 
ward d i r e c t i o n  (d i r ec t ion  t o  the  source) it leads  t o  an unusual d i f f r a c t i o n  
phenomenon ( d i f f r a c t i o n  backwards) . The expressions contained i n  the  bracke ts ,  
as w e  s h a l l  show below, correspond t o  d i f f e r e n t  bundles of geometric op t ics .  
The f i r s t  t e r m  i n  the  brackets  i s  r e f l ec t ed  l i g h t ,  t he  second term is re f r ac t ed  
l i g h t ,  etc. Thus, f o r  l a rge  p a r t i c l e s  a p a r t i a l  wave is  composed of d i f f r a c t e d  
l i g h t  and d i f f e r e n t  bundles of geometric op t ics .  

L e t  us now tu rn  t o  t h e  angular funct ions.  
l a rge  R w e  may disregard Q as compared with S The formula. f o r  S i n  t he  

case R + m may be r ead i ly  obtained from t h e  formula (3.40), i f  we assume t h a t  0 

is  not  very c lose  t o  0 o r  t o  IT. 

W e  have already noted t h a t  f o r  

R' R' R 

Assuming t h a t  (R&) 0=y >>1 and employing t h e  

asymptotic formula f o r  J o ( y ) ,  w e  r ead i ly  ob ta in  

(7.12) 

where 'p = (I+ $)8 - $. 

L e t  us now tu rn  t o  the  formulas f o r  i n t ens i ty .  Disregarding terms with 
Q, , and confining ourselves  t o  summation over R Q, p and changing from 0 t o  t he  

s c a t t e r i n g  angle  6 [see ( 3 . 4 1 ) ] ,  f o r  t h e  quant i ty  i w e  obtain 1 

L e t  us now replace b t  by i t s  expression according t o  formulas (7.11) and (3.42). 
1188 Taking the  f a c t  i n t o  account t h a t  R >> 1, w e  r ead i ly  obta in  - 

L e t  us now tu rn  from the  summation va r i ab le  of R t o  t he  va r i ab le  'c0,  which 

i s  r e l a t ed  t o  R by t h e  following equation 

(7.14) 

A t  t h e  same t i m e ,  l e t  us designate  the  expression contained i n  i by the  1 
s ign  I l 2  by A. 
following way : 

L e t  us represent  i t  i n  the  form of a sum over k i n  the  

(7.15) 
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Here a(k) correspond t o  d i f f e r e n t  components within t h e  parentheses and 
1,2 

t h e  index 1 i n d i c a t e s  t h a t  a term is  chosen which contains ei+. 
i n d i c a t e s  t h a t  a t e r m  is chosen containing e-i@: 

The index 2 

(7.16) 

I n  accordance wi th  t h e  above, t h e  t e r m  a(O) corresponds t o  d i f f r a c t e d  
1,2 

l i g h t ,  and t h e  term a(') corresponds t o  r e f l e c t e d  l i g h t ,  etc. 
1,2 

Our subsequent problem c o n s i s t s  of an asymptotic determination of t h e  sums 
(7.16). 

I n  order  t o  avoid complicating t h e  problem w e  s h a l l  f i r s t  perform a 
simple, but  approximate, examination of t h e  problem, and then s h a l l  t u r n  t o  a 
p r e c i s e  and rigorous ana lys i s  

The approximate method c o n s i s t s  of replacing our  sums by t h e i r  integrals. / l89 
The components contained i n  t h e  sums f o r  a(k3 are complex numbers which f l u c t u a t e  

around each other .  The asymptotic value of t hese  sums w i l l  be very s m a l l ,  with 
t h e  exception of those summation i n t e r v a l s  where t h e  t e r m s  have approximately 
t h e  same phases. The i n t e g r a l s  obtained from t h e  sums (7.16) can be determined 
by t h e  method of s t a t i o n a r y  phases. Thus, those i n t e g r a t i o n  i n t e r v a l s ,  where 
t h e  phases rapidly change and where, consequently, t h e  replacement of t h e  sum 
by t h e  i n t e g r a l  could lead t o  e r r o r s ,  make a negl ig ib ly  small  contr ibut ion t o  
the  i n t e g r a l ,  and are not  taken i n t o  account. I n  those i n t e r v a l s  which make a 
real  contr ibut ion t o  t h e  i n t e g r a l  -- i n t e r v a l s  wi th  approximately a constant  
phase -- t h e  replacement of t h e  sum by the  i n t e g r a l  cannot l ead  t o  s i g n i f i c a n t  
e r r o r s .  

1, 

1 

L e t  us now i n v e s t i g a t e  t h e  i n t e g r a l s  obtained. 

Noting t h a t  d l  = -p s i n  TodTo and changing t h e  order of i n t e g r a t i o n  ( R  = 0 
R corresponds t o  T = - , and R = p corresponds t o  T~ = 0) ,  w e  ob ta in  i n t e g r a l s  

0 7  

0 

L 

e 

(l)It follows from t h i s  t h a t  our approximate method cannot l ead  t o  sig- 
n i f i c a n t  e r r o r s .  It is shown i n  (Ref. 4 3 ) ,  by performing a comparison with t h e  
r e s u l t  of Debye, t h a t  f o r  t h e  case m = m t he  replacement of the  sums by t h e  
i n t e g r a l s  i s  co r rec t .  
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(7.17) 

Several authors have made an asymptotic i n v e s t i g a t i o n  of t h e  i n t e g r a l s  of /190 
rap id ly  o s c i l l a t i n g  functions.  
known. 

The r e s u l t s  derived from these s t u d i e s  are w e l l  

I n  t h e  case p -t m, only those i n t e g r a t i o n  i n t e r v a l s  where the phase is 
s t a t i o n a r y  make t h e  l a r g e s t  cont r ibu t ion  t o  t h e  i n t e g r a l .  I f  w e  w r i t e  our 
i n t e g r a l  i n  t h e  following form 

b 
J -  j{(x) e"*(*)dx, 

a 
(7.18) 

w e  obta in  the following: 

(a) I f  t he re  are no p o i n t s  where $ ' (x )  = 0 wi th in  t h e  segment [a ,  b l ,  
w e  then have 

(7.19) 

Here x i s  t h e  segment boundary. The plus  s ign  i n  the  exponent corresponds t o  

t h e  lower boundary, and t h e  minus s i g n  corresponds t o  t h e  upper boundary. 
1 

(b) A t  t h e  p o i n t s  r, where $' (x) = 0,  and $"(x) # 0 , w e  have 

(7.20) 

i f  xo lies within the  segment [a ,  b] .  J equals a quant i ty  which is t w i c e  as 

s m a l l ,  i f  x coincides wi th  one of t h e  segment boundaries,  and has  a higher  

order  of smallness i f  xo is outs ide  of [a, b l .  
0 

(c) A t  t h e  p o i n t s  xo where $'(x) = $"(x) = 0,  a $ ' I '  (x) # 0, w e  have 

(7.21) 

i f  xo lies wi th in  t h e  segment [a, b ] .  

segment boundary, then J acquires  t h e  f a c t o r  

e '  with t h e  upper segment boundary, J acqui res  t h e  f a c t o r  7 
v3 

I f  t h i s  p o i n t  coincides wi th  t h e  lower 

d i  and i f  t h i s  po in t  coincides 
Ts -.# f 

L e t  us apply t h i s  r u l e  f o r  determining t h e  d i f f e r e n t  terms a(k) . A t  
1,2 

a(o) , t h e  phase of t h e  integrand w i l l  be s t a t i o n a r y  f o r  a l l  T ~ ,  where s i n  TO = 0. 
1,2 
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Here, however, the integrand equals zero, and consequently the asymptotic 
contribution to the diffracted light of the scattering angles, which are not 
close to 0 or n, equals zero. 

/191 

The phase of the integrand for reflected light (at ,(I)) will be: 
192 

(7.22) I+,, = 2 (sin T,, - 'cocos 3 3- $ cos 7w 

Both functions (JI,  and JI,) have = 0 as a root of their first derivatives. 

This root is discarded, just as in the previous case: the integrand at this 
point equals zero. 

In addition, the derivatives q1 and $ also have roots in the case T = V/2 2 0 
(plus for I),, and minus for Jt,) . 

The root Jt2 lies outside of the integration interval, whereas the root Jt, 
lies within it. Consequently, only a(1) now remains for us. 1 

Noting that 
+; (&2) = 2 sin 812, 

we readily find that the preexponential factor will be: 

where 
ti @:2) = sin B12. 

2 
Turning to i we find that i = 1c,I2. We obtain the following for intensity 
of light: 

1 9  1 

(7.23) 

If we take the fact into account that = r 1 s y  
we immediately see that 

this expression exactly coincides with the expresssion for the intensity of 
reflected light Is, which was given in Chapter V 

[(5.6), 8) = 4 1. 
P 

Repeating this line of reasoning for i2 = l a &  ctS:12, we find in precisely 
the same way that the first term which differs from zero (for the intensity of 
scattered light) coincides with the intensity I for reflected light, given in 
Chapter V. 

P 

/192 Let us now examine a E $  , The phase $(k) of the integrand will be - 1,2 

(7.24) +tf\ = 2 (sin .ro--rocos fo) t cos T,,- 
-2wi ( R -  l)(sinr,--s,cosr,). 
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W e  r ead i ly  f i n d  from formulas (3.23) (see 111, 1) t h a t  

When t h i s  r e l a t i o n s h i  i s  taken i n t o  account, w e  f i nd  t h a t ,  except f o r  
T = 0, t h e  de r iva t ive  has a c e r t a i n  root .  It is determined from the  0 
following equation 

2bf: p- 2 (R- 1) tl = 0. 
(7.25) 

B I f  w e  now tu rn  from the  angle  T t o  t he  angle  of incidence O(T = - - 0) Y 0 2  w 0 
and from the  angle T 

the  l a t te r  r e l a t ionsh ip  may be r ewr i t t en  as follows: 

- t o  t he  angle  of r e f r a c t i o n  $(T,= - - $1 , w e  f ind  t h a t  

(7.26) 

Consequently, 

1 2 

@&)==e ((R-2) x f 2  17- ( R  - l)+]). 

It p rec i se ly  coincides with the  formula (5.4) given i n  Chapter 
a t  which a ray ( f a l l i n g  on a drop at the  angle  0) leaves the  drop. 
t he  meaning of (7.26) may be found i n  the  f a c t  t h a t  it ind ica t e s  t h e  angle of 
incidence on the  sphere of t h a t  ray which, f o r  order  k, makes t h e  main 
cont r ibu t ion  t o  the  i n t e n s i t y  of l i g h t  s c a t t e r e d  a t  t h e  angle B(k). 

V f o r  t he  angle 

L e t  us ca l cu la t e  the  second de r iva t ive  $(k) a t  t h a t  po in t  where the  f i r s t  
1 9 2  

de r iva t ive  has a root  which is  determined by the  r e l a t ionsh ip  (7.25). 
r ead i ly  f ind  t h a t  

W e  

(7.27) 

Subs t i tu t ing  t h i s  i n  a(ka , replacing -co and T 

i n t e n s i t y  of l i g h t  s ca t t e r ed  f o r  order  k ,  w e  ob ta in  

by 4 and $, and turning t o  the  1, 1 

(7.28) 

the 
W e  

The formula obtained exac t ly  coincides  with t h a t  which w a s  ind ica ted  on /193 
b a s i s  of t he  simple arguments of geometric op t i c s  [see (5.20) and (5.14)]. 

should recall t h a t  €2 = rs, and 1 - E: = ds). A s i m i l a r  conclusion may be  

reached f o r  I,$k). 

I n  accordance with (7.13), along with the  squares of ind iv idua l  component 
moduli a t  A, the  i n t e n s i t y  must a l s o  contain the  product of t he  components. 

These terms are due t o  in t e r f e rence  of d i f f e r e n t  bundles of geometric 

I n  the  d i r ec t ions  of t h e  rainbows, t h e  second de r iva t ive  $(k)  = 0. 

o p t i c s  (see § 3) .  

This 
1 Y 2  

means t h a t  w e  must perform the  ca l cu la t ions  i n  terms of the formula (7.21). 

An ana lys i s  of t h e  i n t e n s i t y  d i s t r i b u t i o n  a t  angles which are c lose  t o  
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t hese  d i r e c t i o n s  l eads  us t o  a p r e c i s e  theory of rainbows, which must rep lace  
t h e  approximate theory of Airy. The l ack  of space p r o h i b i t s  us from dwelling 
on t h i s  i n t e r e s t i n g  problem i n  g r e a t e r  d e t a i l .  

In conclusion, l e t  us t u r n  t o  a bundle which i s  d i f f r a c t e d  backwards, which 
w e  discussed i n  Chapter V. 

I n  formulas (3.39) and (3.40) f o r  Q, and S L Y  w e  t u r n  t o  s m a l l  
1 1 
P 2 

I n  add i t ion ,  i f  w e  r e t a i n  only uni ty  i n  the parentheses i n  t h e  expressions 

R R 

e ($--I  (y = ( a  + - I  e = 1). 

f o r  c and b ( i n  t h e  case R + a), w e  r e a d i l y  f i n d  t h a t  

(7.29) 

I n  view of the w e l l  known proper t ies  of Bessel funct ions,  w e  have 

Replacing t h e  sum i n  i by t h e  i n t e g r a l  and 

i n t e g r a t i o n ,  (0,l) , w e  r e a d i l y  obtain the  following 
133 

I 

- p*J J,,(z~> tef+ d'.  
0 

Here z = O D .  

passing t o  t h e  l i m i t s  of 

expressions f o r  i t  

I n  accordance wi th  (7.19), t h e  asymptotic va lue  of t h e  i n t e g r a l  w i l l  be  /194 
as follows i n  t h e  case p + m: 

This m e a n s  that f o r  s m a l l  angles  around t h e  d i r e c t i o n  t o  t h e  source,  t h e  
i n t e n s i t y  of d i f f r a c t e d  l i g h t  may be determined by t h e  following formulas 

(7.30) 

W e  may see t h a t  t h e  angular change i n  d i f f r a c t e d  i n t e n s i t y  i n  t h e  backward 
d i r e c t i o n  is determined by t h e  func t ion  

4 
F*(4 = 3 4 (4 (2 - P4). 

Table 18 gives  10 F*(z). W e  present  a graph f o r  i t  i n  Figure 51. 

The d i f f r a c t i o n  p i c t u r e  is j u s t  t h e  opposi te  here  from t h a t  which i s  
obtained i n  t h e  forward d i r ec t ion .  

The i n t e n s i t y  maxima l i e  a t  t h e  po in t s  where J' (z)  = 0. This i s  z = 3.1; 2 
6.8; 10.0;  ...; F* w i l l  be: 0.096; 0.037; 0.026. 

142 



TABLE 18 

0.0 
03 
1.0 
I 3  
2.0 
2D5 
3,O 
35 
4,O 
4.5 
5,O 
6.0 
7.0 
8,O 
9,0 
L0,O 
11.0 
12.0 

~ - - -  
0 
0,0038 
0,0535 
0,2183 
om45 
0,8064 
0,9576 
0,8525 
0,5374 
0,1924 
0,0088 
0,2391 
0,3682 
0,0517 
0,0850 
0,2628 
0,0784 
0,0292 

Zeros l i e  a t  the poin ts  where J2(z) = 0. This equation 

coincides wi th  t h e  equation (Jl(z))= 0. 
dz Z 

Thus, t h e  p o s i t i o n  of t h e  zeros i n  t h e  case of backward 
d i f f r a c t i o n  coincides wi th  t h e  pos i t ions  of t h e  m a x i m a  i n  
t h e  case of forward d i f f r a c t i o n .  This i s  z = 0; 5.14; 8.42; 
11.6; ... 

The s c a t t e r i n g  i n t e n s i t i e s  w i l l  n o t  equal  zero here ,  
s i n c e ,  besides  d i f f r a c t e d  l i g h t ,  w e  have r e f l e c t e d  l i g h t  and 
o t h e r  f luxes here.  I n  essence,  t h i s  d i s t inguishes  t h e  angles 
0 = 0 from t h e  angles B = 0,  and t h e  i n t e n s i t y  of a d i f f r a c t e d  
f l u x  i s  of t h e  same order as o t h e r  f luxes.  For example, f o r  

d i f f r a c t e d  l i g h t  i n t e n s i t i e s  t o  other  f luxes  a t  t h e  m a x i m a  
/ 195 a cloud drop with a Q, 6 F\ (p  = 60), t h e  r a t i o s  of t h e  - 

(w**-n 0 equals 2.9'; 6.4"; 9.5'; ...) w i l l  be 1; 0.38; 0.28; ... 
W e  should emphasize t h e  f a c t  t h a t  d i f f r a c t i o n  backwards must occur not  

only f o r  t ransparent  p a r t i c l e s ,  but  a l s o  f o r  p a r t i c l e s  with any electric 
proper t ies .  I n t e r f e r i n g  with bundles of geometric o p t i c s ,  d i f f r a c t e d  l i g h t  
can produce a c h a r a c t e r i s t i c  o s c i l l a t i n g  i n t e n s i t y  d i s t r i b u t i o n  a t  s m a l l  angles 
0 ,  leading t o  the formation of so-called g lo r i e s .  

In  t h i s  connection, w e  should 
note  t h a t  t h e  customary theory of 
g l o r i e s ,  which a t t r i b u t e s  t h e i r  occurrence 
t o  coronas i n  l i g h t  which is  s c a t t e r e d  
a second t i m e  [see (Ref. 6 4 ) l  i s  in- 
co r rec t .  Several f a c t s  i n d i c a t e  t h a t  
g l o r i e s  occur during s i n g l e  s c a t t e r i n g .  

I n  our opinion, t h e  viewpoint of 
Ray is inco r rec t .  H e  assumes that 
g l o r i e s  are coronas produced by a drop 
from t h e  image of t he  l i g h t  source i n  
the  drop ( R e f .  4 4 ) .  It would be  tempt- 

and state t h a t  it causes backward 
d i f f r a c t i o n ,  bu t  i n  a c t u a l i t y  it is 
inadequate,  s i n c e  backward d i f f r a c t i o n  
must occur f o r  opaque p a r t i c l e s .  

w 
400 --Z i n g  t o  extend t h i s  clear explanation 

2 3 4 5 6 7 8 9 / O H  I2 
~~ 

Figure 51. Graph of F*(z). 

The reason f o r  backward d i f f r a c t i o n  i s  t h e  same as f o r  forward diffraction-;  
t h e  wave na ture  of t h e  phenomenon. 

The  d i f f e r e n c e  i n  l i g h t  i n t e n s i t i e s  i n  t h e  two d i r e c t i o n s  ( M i e  e f f e c t )  /196 
corresponds t o  t h e  disappearance of t he  reverse wave during t h e  t r a n s i t i o n  
( i n  wave o p t i c s )  from elementary waves which are bent t o  l i g h t  which i s  
propagated r e c t i l i n e a r l y  [with t h e  a i d  of t h e  Huygens-Fresnel p r i n c i p l e ;  see 
(Ref. 2) § 431. 
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Let us now perform a strict analysis of the problem. 
sums (7.16), and let us employ the precise summation formula -- the Poussin 
formula -- for their transf0rmation.l 

Let us turn to the 

The summation formula of Poisson and its derivation is given in the book 
by Courant and Hilbert (Ref. 96). The formula which appears in this book and 
also in other places gives the transformation of one infinite series into 
another one. It is not suitable for direct application to our problem, since 
we are interested in the formula for transforming a finite sum. 
the derivation of the corresponding formula, following the procedure of Courant 
and Hilbert. 

We shall give 

Let us investigate the following function of X: 
n. 

* I  
F (4 = z ? (29n + x). 

Let us expand it in the interval 0 & x  2 2s in Fourier series: 

Under the inner summation sign in the integral, let us turn to the variable 
rl = 2sn + t: 

n, 2=(*+1) z J ?(V)C -#-Qdq= h(]+l )y  (ri) e-fv1; dq. 
ma h(r 

Assuming that x = 0, we obtain 

The latter formula may be rewritten as follows: 

(7.31) 

This relationship is the form of the Poisson formula which is necessary to us. 
In the case in which we are interested, nl = 0, 
(n2 = [ p ] )  which is closest to p .  

1197 
to n2 is the whole number 

We can see from the precise formula (7.31) that simple substitution of the 
sum by the integral will be valid if it is found that, in view of the properties 
of the integrals contained in the right hand side of the equation, the sum on 
the right degeneratesinto only one term--the term with v = 0 (substitution of 
the limit n2 by n2 4- 1 is not essential, in view of the fact that n2 >>1). 

Let us now analyze the sums (7.16) by means of the relationship (7.31). 

Each of the sums may now be transformed into an infinite series of integrals: 
+= +m +W 

3 2" fpk =$,')a = 2" *(I)' 1.4 *- , a(&) 1.9= ZVaB.'. 

-Q --m -0 

("The author is indebted to G.A. Grinberg, who devoted his attention to 
the formula of Poussin (1947). 
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The quantities af:IZv are the integrals contained in the right hand side of 
equation (7.31). 
investigated above by the factor e-i4 avg under the integral sign, or by the 

factor e in view of (7.14). For example, we thus obtain 

Each of these inte rals differs from the integrals which we 

-i2avp cos TO 

and so on. 

If we formally replace f. $ in the previous integrals (7.17) by f. 8 - 2av, 

, if we replace f: $ 
we may transform the previous integrals into new ones which must be investigated. 
We can thus immediately calculate the quantities a(k), 
by f. 8 - 2av in the previous results. 

1, 2 

In accordance with this, the quantities will be negligibly small. 
1, 2 

Just as previously, this means that the asymptotic contribution of diffracted 
light at angles which are not close to 0 or a is zero. 

', we find that the phase is stationary for 
1, 2 

When analyzing a 
+ 8 - 2av - -  . Since the scattering angle 8 lies between zero and a, out of '0 - 2 

all the terms with different v, only the term with v = 0 will have a stationary 
phase within the integration interval. 

1198 

Thus, in this case the Poisson formula degenerates precisely into the simple 
replacement of the sum by the integral. 

. Condition (7.26) for the stationary nature (k), v 
1, 2 

Let us now turn to a 

of the phase will appear as follows: 
P)= '-c { ((k-22)a+ 2 [(9-(k - 1) I+]) + 2 4  (7.26*) 

of the integration variable T~ (or 4 )  close to which the phase 
These values will depend on the scattering angle $. 

The meaning of this relationship may be found in the fact that it indicates 
those values 

is stationary. 

Let us investigate (7.26*) in greater detail. For this purpose, let us 
turn to Figure 52, where we have shown the values of the expression contained 
within the inner parenthesis in the case of different 4 and k for the case of 
a water drop in the air ( X  % 0 . 5 ~ ~  n = 1.3300). We can see from this figure, 
for example, that for k = 2 (rays which pass thxough, just as through 
a lens), we must set v = 0, and must select the plus sign before the outer 
parenthesis in (7.26*). 
out, since the $ corresponding to them do not enter the region (0, a). 

Other values of v and terms with the minus sign drop 
In the 
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case k = 3,  w e  are l e f t  wi th  only one term with v = 0 and with t h e  p lus  s i g n  i n  
(7.26*). However, one s i g n i f i c a n t  new f a c t  appears here.  There w i l l  be two 
values  f o r  c e r t a i n  s c a t t e r i n g  angles  B: -io o r  $, which w i l l  s a t i s f y  t h e  

r e l a t i o n s h i p  (7.26*). I n  Figure 52, t h e  f a c t  t h a t  t h e  l i n e ,  which is p a r a l l e l  
t o  t h e  $-axis, i n t e r s e c t s  curve 3 a t  two poin ts  ocrresponds t o  t h i s .  
ca lcu la t ing  t h e  s c a t t e r e d  l i g h t  i n t e n s i t y ,  w e  must sum both i n t e n s i t i e s .  
physical  t e r m s ,  t h i s  f a c t  i s  r e l a t e d  t o  t h e  appearance of a rainbow i n  t h e  t h i r d  
f lux.  

When 
I n  

It may a l s o  be r e a d i l y  seen t h a t ,  i f  t h e  phase of t h e  integrand i s  maximal 
f o r  one of t h e  r a y s  s c a t t e r e d  i n  a given d i r e c t i o n ,  i t  w i l l  be  minimal f o r  t h e  
other  one. 

This  means t h a t  t h e  corresponding waves, which are s c a t t e r e d  i n  one d i r e c t i o n  
and i n t e r f e r e  a t  i n f i n i t y ,  w i l l  have d i f f e r e n t  phases. 
order t o  enter t h e  allowed region of B values  (between 0 and a ) ,  w e  must select 
v = -1 and t h e  minus sign. 
p lus  s ign  from$=Oto t h e  poin t  a t  which curve 5 i n  Figure 52 i n t e r s e c t s  t h e  
l i n e  2n. I n  t h e  subsequent i n t e r v a l  of 9 values ,  w e  must select v = -1 and 
t h e  minus sign. 
formulas only by t h e  addi t ion  of t h e  t e r m  2nv i n  t h e  expression f o r  B(W. 
we o b t a i n  t h e  same formulas f o r  i n t e n s i t y  (7.28) as w e  obtained previously.  
i s  important t o  note  t h a t  t h e  addi t ion  of t h e  term 2nv makes i t  poss ib l e ,  f o r  
each s c a t t e r i n g  angle  8,  t o  f i n d  t h e  angle of incidence of t h e  r a y s  9 which are 
s c a t t e r e d f o r a n y  order  k a t  t h e  angle  6. 
a n a l y s i s  of t h e  problem by employing t h e  Poisson formulas, and does not  follow 
from t h e  approximate a n a l y s i s  performed previously.  
obtained then f o r  B(k) i n  t h e  case k 2 4 l eads  t o  va lues  of fi(k) whichanenot contain- 
ed i n  t h e  region of allowed values  of-@. 
s c a t t e r e d  l i g h t  would have t o  be absent  [more p rec i se ly ,  i t s  i n t e n s i t y  would 
have t o  be  described no t  by (7.28), but  by another formula]. 
i s  no t  t h e  case, and formula (7.28) is i n  a c t u a l i t y  t h e  c o r r e c t  formula f o r  any 
k. The f a c t  t h a t  t h e  s c a t t e r i n g  angles  6 f o r  any order  e n t e r  t h e  allowed reg ion  
(0, n )  i s  due t o  t h e  p r e c i s e  a n a l y s i s  of t h e  problem based on t h e  Poisson 
formula 

I n  t h e  case k = 4 ,  i n  /199 

I n  t h e  case k = 5, w e  must select v = -1 and t h e  

We have already noted t h a t  t hese  formulas d i f f e r  from previous 
Thus, 

It /200 

This f a c t  r e s u l t s  from a p r e c i s e  

The formula which w a s  

This means t h a t  i n  t h e  case k 2 4 

Natural ly ,  t h i s  

The appl ica t ion  of t h e  Poisson formula t o  t h e  sum (7.29) l eads  t o  t h e  same 
formula (7.30) f o r  backward d i f f r a c t i o n ,  which w e  obtained previously.  

§ 3. Scat te r ing  I n d i c a t r i x  

Several authors  have ca lcu la ted  t h e  i n t e n s i t i e s  of t h e  t ransverse  and 
longi tudina l  components of s c a t t e r e d  l i g h t  f o r  t ransparent  p a r t i c l e s .  

The study by V. V. Shuleykin which was published i n  1924 (Ref. 51) and 
then supplemented i n  1933 (Ref. 52) is of g r e a t  importance. V. V. Shuleykin 
not  only performed ca lcu la t ions  f o r  t h r e e  intermediate  cases, but  a l s o  inves t i -  
gated the l i m i t i n g  t r a n s i t i o n  from an h f i n i t e l y  s m a l l  p a r t i c l e  t o  an i n f i n i t e l y  
l a r g e  p a r t i c l e .  The i n v e s t i g a t i o n s  of V. V. Shuleykin had an impact upon a l l  
subsequent s t u d i e s  on tabula t ion  of t h e  Mie formulas and on t h e  use of t hese  
formulas f o r  analyzing o p t i c a l  phenomena i n  t h e  sea and t h e  atmosphere. 
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Figure 53. Indicatrix for m = 1.32 and 
and p = l(b), p = 3 ,  (c),p = 9 (d). 

In the work by V.V. Shuleykin, the 
relative refraction coefficient is as- 
sumed to be 1.32. For example, this cor- 

Figure 52. Rotation of Rays in a Drop responds to the refraction of small drops 
of paraffin oil in water. He investigated 

the following values for p :  

' 
~1 -20 io io io Bo io do 90 y 

a) lim p=O C) p=3 
b) P = l  d) p-9 in (Ref. 52) 

e) lim p=m 

Case (a) corresponds to Rayleigh scattering. In case ( b ) ,  it is necessary /201 
to take into account two electric oscillations and one magnetic oscillation. 
In case (c), V.V. Shuleykin considers three electric oscillations and three 
magnetic oscillations. The indicatrixes calculated by V.V. Shuleykin [for cases 
(b), (c), and (d)] are shown in Figure 53. We have already discussed his analy- 
sis of the case of an extremely large particle [case (e)]. 

The fundamental physical laws for the phenomenon are as follows: 

1. When p increases, the Rayleigh scattering symmetry is disturbed. A 
large portion of the light is scattered in the region of angles B which are less 
than 900 , i.e., forward -- the Mie effect (see Figures 11 and Figure 53). 

2 .  When p increases from 0 to approximately 2, the maximum of the degree of 
polarization for scattered light is displaced (for dielectric pellets) from 
6 = 900 toward larger angles B, and becomes less than unity. With a further 
increase in p ,  the polarization changes irregularly. 

Following V.V. Shuleykin, similar calculations were performed by Bliimer 
(Ref 56). 
different cases. 

His studies provide numerical data pertaining to a great many 
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In order to illustrate the Mie effect, in Figure 54 we have presented the 
ratio of the intensities i /i (forward and backward) as a function of 

p(m = 1.25) (logarithmic scale in Figure 54). In the section p(0.5 - 5), the 
quantity i /i changes from a constant value (unity) to a rapid increase 

0 180 
j 2 0 2  

0 180 
(% P21.1 

An investigation of the scattering of visible light by drops of water 
4 
3 (m = - ) is of interest for geophysics. 

p = 0.1; 1.5; 3. 

Bliimer investigated the following cases: 

We have presented his data in Table 19 [i according to (6.18)]. 

41 42 45 10 40 30 rqo p 
Figure 54. Ratio of Intensity Scattered 
Forward to Intensity Scattered Backward. 

91; 
I 

Figure 55. Indicatrixes for Drops 
of Water (m = 1.33 and p = 4, 8, 

15, 30). 

In addition, Bliimer reduced the 
computational data of Ray (Ref. 44) for 
the case p = 12. 

The study by Paranjpe, Naik, and 
Vaidya (Ref. 98) presents the results 
derived-from calculating the indicatrixes 
for p = 4, 5, 6 ,  7, 8 ,  9, 10, 12, 15, 
20, 30 (m = 1.33). We have presented 
some of the data they obtained in 
Table 20 and Figure 55 (different scale 
of the curves). 

/203 

In the case p = 20 and p = 30, the particle may be regarded as a large /206 
particle with a certain approximation. 
mate representation of the indicatrix, just as in the case of reflected particles, 
as the simple sum of the geometric and diffraction pictures. 

It is natural to search for an approxi- 

It must be noted, 

(l)The curve in Figure 54 was compiled on the basis of data by Bliimer 
(Ref. 54). More detailed calculations revealed the interference nature of the 
curve: it has a sharply oscillating form. 
Figure 54. 

We have omitted these details in 
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TABLE 1 9  

0.4252 
0,4188 
0.4002 
03719 
0,3188 
0.264 
0,2372 
0.2187 
0,2128 
0,2180 
0,2363 
0,2644 
03171 
0,363691, 
0,3982 
0,4164 

- 
P - 
B -_  
u 

10 
20 
30 
45 
60 
70 
80 
90 

100 
I10 
120 
135 
150 
160 
1 70 
180 
- 

0,0000 
0,0152 
0,0614 
0.1422 
0,3326 
05989 
0.7892 
0.9405 
1,ooOo 
0,9426 
0,7922 
0,6015 
0,3343 
0,1437 
O,OY25 
0,0151 

I 

i 

0,6606 
0.6426 
0,5916 
0,5664 
0,3840 
0,2606 
0,19~So 
0,1451 
0,1098 
0,0863 
0.0714 
0,0621 
0,053 1 
0,0516 
0,0504 
0,0498 
0,0496 

P 

0,0000 
0,0125 
0,0507 
0,I 163 
0,27 1 1 
0,4948 
0,6706 
0,8409 
0,9645 
0,9974 
0,9205 
0,7552 
0,4557 
0,2032 
0.0896 
0,0222 
O.OoO0 

-- 

-- 

3 

i 

42,519 
39,455 
31,459 
21,402 
8,618 
2,134 
0,658 
0,332 
0,408 
0,497 
0,477 
0,363 
0,184 
0.169 
0,147 
0,lYO 
0,210 

P 

0,0000 
0,0070 
0,027 1 
0.0568 
0,0945 

-0,0095 
-0,3866 
-0.4821 
0,2095 
037 14 
0,7161 
0,7538 
0,5934 
0,0695 

-0,0520 
-0,0020 

0,ooOO 

-- 

however, t h a t  -- i f  t h e  accuracy of t h i s  method ( fo r  p = 30) i s  about 5% f o r  
s m a l l  angles  ( 6  Q 1 ) -- f o r  l a r g e r  angles  t h e  method is  too  rough. 

P 
The l a r g e s t  value of p f o r  which p r e c i s e  c a l c u l a t i o n s  w e r e  made i s  p = 60. 

This  corresponds t o  s c a t t e r i n g  of v i s i b l e  l i g h t  by a cloud drop with a rad ius  
of about 6 1-1. W e  c a r r i e d  ou t  t hese  c a l c u l a t i o n s  f o r  m = 1,3300 (Ref. 127). 
When performing these  complex ca l cu la t ions ,  w e  employed t h e  t a b l e s  of funct ions 
Q, and S which w e  compiled. 

l a r g e  order  were done according t o  t h e  recursion formulas given i n  Chapter 111. 
In order  t o  obta in  t h e  r e q u i s i t e  accuracy, w e  had t o  c a l c u l a t e  a l l  funct ions 
with t h e  i n d i c e s  R < 70. For purpose of con t ro l ,  a "reference set" of c y l i n d r i c a l  
func t ion  va lues  w a s  ca lcu la ted  according t o  t h e  approximate formulas of V. A. 
Fok (Ref. 42). 

The c a l c u l a t i o n  of t h e  Bessel funct ions with R 

Tabulation of t h e  p a r t i a l  wave amplitudes i s  usua l ly  complicated by t h e  
f a c t  t h a t  t h e  funct ions contained i n  t h e  general  formulas f o r  amplitudes are 
complex even f o r  real arguments. 
However, we  can r e a d i l y  avoid t h i s  complication i n  t h e  case of t ransparent  
p a r t i c l e s .  We must t a b u l a t e ,  no t  t h e  general  formulas f o r  amplitudes, but  t h e  
formulas (7.2) i n  which t h e  real and imaginary p a r t s  of t h e  amplitudes are sep- 
a r a t e d  
of t h e  real func t ions  Jt and x 

The formulas of V. A. Fok y i e l d  t h e  following approximate expressions f o r  

This  f a c t  g r e a t l y  complicates t h e  ca l cu la t ion .  

from t h e  very  beginning, and where t h e  amplitudes are determined i n  terms 

R '  R 

t h e s e  func t ions  ( i n  t h e  case R i x ) :  
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(7.32) 

0 
- 2.2 
-16,6 

- 
- 6.2 
-28.9 

18B 

-41.4 
55.3 

-639 

86 
-94.6 
- a 3  

45.3 
- 7.8 

35.3 

--8af5 
58.7 
66.6 
0 

- 

Here q = tgB - B, and the angle B is determined by the relationship 

(7.33) 
cosfl=- I 

X 

TABLE 20 

0 
10 
20 

a0 
40 
50 

60 
70 
80 

90 
loo 
110 

125,240 
114,645 
80273 

44,255 
18,853 
6,549 

2,005 
2.522 
0.533 

1,622 
0,841 
1,277 

-- P I  ! P I  I 

I I 1  
0 

- 5,6 
- 8,O 

9,4 
-36.8 

15,H 

--17,3 
-89,3 
-20.4 

- 
354 

- 43.0 
-75.4, 

-- 
2 768,31 

635,98 
237,20 

1 6 4 3  
82.28 
6203 

36,12 
Z,94 
31.75 

487 
1 8 3  
8.78 

I I I  

0 
- 0,08 
- 1,30 

1237.15 0 2922,N 
90835 4 4  1499,30 
343.15 - 3,1 358.81 

I I I  
I I I  

- 3,sO 
--10,30 
-15,40 

56.82 -25,8 14522 
28'2'2 -11,6 66,48 
2 7 B  9,2 28,68 

t I 

1 I 1  

- 2,7l 
-20,95 

81,36 

4.51 -64.2 59.81 
4,16 -45.4 15.71 
605 29.7 3.48 

-[-.- 

68.17 
-15.18 
-9563 

3.46 1.2 758 
3,03 

3.15 457 8.77 
I 

I I 
I - 13,95 

-la42 0,B 71.7 

14$47 I 
34.02 524 26,9 
2121 
5,06 2.26 -15.1 
0 

/207 - All the calculations were performed for constant x. 
means of the table of cosines for given R, we can find tg B ,  q and then J, 

Determining B by 

R and 

XI1 

12.77 

4.55 
11,53 

831 
11.38 
5.63 
38.m 

CL. 

150 

--81,5 
-18.0 

46.2 
59,l 

-25.2 
0 

2.73 
44 ,s  

33,28 
49.23 
16.94 
19.a 

130 
140 

150 
160 
170 
180 

0,612 
0.654 

1.429 
3,462 
5.416 
7 . w  



TABLE 20 (continued) 

15 I 20 I 30 

18.07 
%,I3 
48,M 

- 

3 4 9  
108.71 
223,92 

i i I i  - 
22 7813- 0 
4036.17 11.0 
228,s 31.2 

I I I I I 

33J 23.75 
-16.2 33.25 
-20.4 

88,6 97,91 
-10,6 
-%.G 173.30 

27.54 I 59’3 

-92.4 
-70.6 

I 

12,M 1 -268 
I 

1G.M 1 -42.4 

--- 

I 
15,40 
8.82 
27.47 

13,14 
24,44 
136,74 

- I l , O  
-36,6 
-99,2 

- 

754 
-48,3 
-- 57,2 

- I I 
I 1 

-. 

P 

0 

7J 

- 0.8 

- 10.c; 

-81,Y 

-8 I .4 

25.1 
-37.1 I 

I 1 -- - 
I 25.1 ; 

-15.’? I 

43,7 

S8.4 

I 
The accuracy of this method is small for functions whose index is close 

We must directly calculate q according to the following formula to x(f3 + 0). 

In the case R 2 x, the formulas for J, R and xR will be 

(7.34) 

Here n = a - th a, and the real quantity a is determined by the equation 
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1 ch 01- -- (0 ,<a < o) 
X (7.35) 

The quantities I and K are cylindrical functions with imaginary 
113 11'3 

argument of order 1 /3 .  

We should note that, if Rq and Rn are considerably greater than unity, so 
that the first terms of the ordinary asymptotic expressions can be employed for 
the cylindrical functions, then the formulas of V. A. Fok change into the Debye 
formulas (see Chapter 111) e 

By employing the table of JI, and x R ,  we calculated the amplitudes of c' R' 
Then employing the table of Q R and S k y  we calculated all the c" bi and bi . 

components in the sums (2.45), and then the sums themselves. 
R' 

The attenuation coefficient calculated according to these data [according 
to formula (6.5)] w i l l  be 1.9912~a2. 
scattered at the angle B and the degree of its polarization, which we calculated, 
are given in Table 21. 

The intensity of light (the quantity i) 

The scatterkng indicatrix compiled according to these data is shown in 
Figures 56 and 57. 

Curve 1 in Figure 57 shows the indicatrix for the section (0 - 10'); curve 
2 gives the indicatrix for (10 - 4 0 " ) ,  and curve 3 gives the indicatrix for 
(40 - 180'). 
scale which is ten times smaller, and curve 1 has a scale which is 2500 times 
smaller. 

The scale in the figure pertains to curve 3 .  Curve 2 has a 

TABLE 21 /208 
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This change in the scales clearly shows the order of intensity for light 
scattered at different angles. 
at small angles. 

The scattered light is primarily concentrated 

Figure 56. Indicatrix of Cloud Drop (m = 1.33; 
p = 60). 

The maximum close to $ = 140" belongs to the first rainbow. 
Airy formulas, the intensity maximum in the rainbow does not coincide with the 
rainbow direction in terms of geometric optics. For our drop, it is displaced 
by 5" toward larger angles. 
point A. 

Based on the 

Its position may be noted in the figure by the 

The indicatrix shown in Figure 56 must be regarded as the characteristic 
curve for scattering in clouds. 
clouds is very greatly extended is extremely important. 

The fact that the scattering indicatrix in / 209  

It must be emphasized that such a strong anisotropy in the scattered light 
distribution will only occur in thin layers, where there is single scattering. 
In real clouds, whose optical thicknesses 
than unity, the spatial distribution of scattered light will be much more 
uniforqin spite of the fact that the scattering indicatrix will be very greatly 
extended. 
expected for sufficient cloud thickness. 
in observations on the angular distribution of cloud b?ightnesses 

are usually considerably greater 

An almost symmetrical distribution of scattered light must be 
This fact is apparently substantiated 

The fact that the spatial distribution of scattered light is not only I210 
determined by the extension of the scattering indicatrix, but also by the layer 
thickness, pertains not only to clouds, but also to any turbid medium in general. 

In order to change from monodisperse curves (the type shown in Figure 56) 
to real clouds, it is necessary to average over different particle dimensions 
in the cloud (see Figures 1 and 2). 
indicatrixes for an entire group of large transparent particles, 

For this purpose, we must calculate the 

We have already noted that the case of large transparent particles is the 
most difficult to calculate. If superposition of the diffraction indicatrix 
and the geometric optics indicatrix in the case p = 10 yields fairly good 
results for m = my for transparent particles -- even in the case p = 60 -- the 
agreement between the precise and approximate values is poor (small angles 

(')In the case of a spherically symmetrical distribution of scattered light 
within a cloud, the brightness of its surface must be described by the Lambert 
law. 
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Figure 57. Indicatrix of a Cloud Drop in Rectangular 
Coordinates 

represent an exception; in the case = 0, for example, the approximate value 
is only 1% larger than the precise value). Two facts account for this: 

1. A ray of geometric optics is the normal to the plane wave, which may 
be assumed to be infinite in directions which are perpendicular to the ray. A 
limitation upon it in the form of a "ray" (thin tube) must inevitably cause 
diffraction phenomena at the boundaries. 

It may be readily seen that the smaller is p ,  the greater will be the error 
caused by this fact. 

Rays having an infinitely small "thickness", which we employed in Chapter 
V, are far from being an idealization. Geometric optics does not eliminate the 
error occurring here by introducing any corrections to the geometric picture. 
It is only possible to perform a radical improvement by replacing the geometric 
investigation by a wave investigation. 

2. 
etc. -- are coherent (they arise from different sections of one and the same 
wave surface). This means that we can introduce significant improvements in 
our geometric picture, if we allow for interference between these fluxes. 
is the customary method for improving the geometric picture, which is applied 
in optics, and our problem is similar to the problem of bands having the same 
inclination. 
precise indicatrixes for transparent particles and for large p 

Different fluxes which are scattered by a drop -- diffraction, reflected, 

This 

This causes the poor agreement between the approximate and /211 

("This is the same reason for the lack of agreement found by (continued) 
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The problem of allowing for interference between different fluxes is very 
important. Let us investigate it greater detai1.l 

When interference is taken into account, the intensity of scattered light 
will be 

(7.36) 

Here a (k) 
(k) py A 
PY s 

are the absolute values for the amplitude of different fluxes, and 

-- the phase displacements in waves of different fluxes. 
The flux amplitudes investigated in Chapter V(k = 1, 2, 3...), may be 

readily determined by means of the quantity T ( ~ )  and are calculated as follows: 
PY s ,  

a(W P. 8 - - fFe. (7.37) 

With respect to the phase displacement A, which we shall determine with 
respect to the central ray scattered in a given direction, we may write it as 
follows : 

A(') A''). 1 + A(J% 2 + A('), 8, (7.38) 
p , n  P* 8 P. 8 

where A (k)y 
PY s 

and internal reflections. 
38) , page 441 ; A(k) Y 2 

in the behavior of different rays. 

is the phase displacement taking place in the case of external 
It may be determined in the customary way [see (Ref. 

is the phase displacement due to the geometric difference 
PY s 

The difference between the paths which are traversed by the rays, calculated 
between the tangent planes to the sphere, will be 

(7.39) dr(pta=2pfi(~, m); f k ( ( p ,  m)=cos~- ( (R-  ~ ) m c o s + .  

1212 The third component A(k), is due to the special effect which arises - p ,  8 
during an approximate investigation of wave phenomena. 
diffraction close to the focal points [see (Ref. 38), page 2621. 

This is the so-called 

The behavior of a plane wave is very complex right next to the focal point. 
However, far from the focal point the results derived from numerous studies of 
this phenomenon can be formulated quite simply: passage through the focal line 

(footnote (1) continued from page 154): Bliimer (Ref. 56). 
can only be expected (in view of 1 and others) for large p. 
the cases p = 0.1; 1.5 here is perplexing. 

Such an agreement 
An examination of 

("We should note that Mecke [see (Ref. 69) ]  dealt with the problem of 
However, he confined himself to only allowing for interference previously. 

investigating very small angles around the forward direction, since his study 
was devoted to coronas. He thus committed errors in the formulas. 
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causes a phase s h i f t  of ~ / 2 .  
s h i f t  of n ( foca l  po in t ) .  

For l i g h t  which is  r e f r a c t e d  t w i c e ,  t h i s  y i e l d s  a 
For f l u x  which causes t h e  f irst  rainbow, a t  t h e  angles  

we  ob ta in  T, and 3 T f o r  l a r g e  angles ,  etc. ' < ' rain 2 
L e t  u s  now i n v e s t i g a t e  a f i e l d  which i s  d i f f r a c t e d  i n  t h e  forward d i r e c t i o n .  

The Huygens p r i n c i p l e  ( i n  t h e  Kirchhoff formulation) l eads  t o  t h e  following 
expression f o r  t h e  f i e l d  ( fo r  d i f f r a c t i o n  i n  a c i r c u l a r  hole) :  

The f i e l d  which is d i f f r a c t e d  by t h e  hole  acqui res  a phase displacement of 
n/2, which l eads  t o  t h e  f a c t o r  + i. For d i f f r a c t i o n  around an opaque d i sk ,  i n  
accordance with t h e  Babinet p r i n c i p l e ,  w e  must take t h e  phase f a c t o r  i n  t h e  form 
of ( - i ) ,  i n  order  t h a t  t h e  superposi t ion of t h e  d i s k  and hole  f i e l d s  produce 
zero i n  t h e  sum. Thus, t h e  d i f f r a c t e d  f i e l d  w i l l  be 

E = - i  ( T ) a  1+cosp - p (7)E,, 51 (2) . e 2  (7.40) 
r '  

The amplitude and phase of t h i s  expression form t h e  zero component i n  t h e  
sums (7.36). 

W e  should note  t h a t  i f  w e  rep lace  ( i n  view of t h e  smallness of 8)  cos f3 by 
1, and s i n  8 by E i n  formula (7.40), then t h i s  expression exac t ly  coincides  with 
t h e  expression f o r  t h e  d i f f r a c t e d  f i e l d  obtained from a n  asymptotic study of 
t h e  p r e c i s e  formulas. I n  (6.8), i t  i s  thus necessary t o  change t h e  s i g n  i n  
accordance wi th  t h e  f a c t  t h a t  w e  must change from t h e  angles  8 and 9 t o  t h e  
angles  E and 4 '  (see 111, 2) .  
shown t h a t  t h e  phase displacements described above coincide wi th  those which are 
obtained from t h e  asymptotic expressions ( i n  t h e  case p + m) f o r  t h e  p r e c i s e  
values  of t h e  f i e l d .  

I n  p r e c i s e l y  t h e  same way it  may be  r e a d i l y  

L e t  u s  now t u r n  t o  t h e  numerical da t a .  L e t  u s  compare t h e  r e s u l t s  1213 
derived from ca lcu la t ions  with t h e  p r e c i s e  formulas with t h e  r e s u l t s  derived 
from approximate ca l cu la t ions .  The latter w i l l  be  done i n  two d i f f e r e n t  ways: 
(a) according t o  a s impl i f ied  scheme, examining t h e  superposi t ion of t h e  
d i f f r a c t e d  and geometric i n d i c a t r i x e s  without allowance f o r  i n t e r f e rence ;  (b) 
according t o  a more p r e c i s e  scheme -- with allowance f o r  i n t e r f e rence .  We s h a l l  
employ t h e  quant i ty  i as follows: without an index, f o r  p r e c i s e  values;  as i 

a n d i b  r e spec t ive ly ,  f o r  approximate values .  
a 

An a n a l y s i s  of t h e  numerical d a t a  i s  very important i n  p rac t i ce .  In § 2 
of t h i s  chapter ,  w e  showed t h a t  i n  t h e  case p -+ m t h e  p r e c i s e  formulas f o r  t h e  
f i e l d s  change i n t o  t h e  superposi t ion of t h e  geometric o p t i c s  f i e l d s .  
t h a t  i n  t h e  case p + m t h e  approximate and p r e c i s e  i n d i c a t r i x e s  must coincide. 
This "matching" of both methods a t  i n f i n i t y ,  i s  of g r e a t  importance. However, 
t h e  most important problem of t h e  magnitude of t h e  e r r o r  which arises when t h e  
p r e c i s e  formulas are replaced by the  approximate formulas f o r  l a r g e ,  but f i n i t e ,  
p ,  s t i l l  remains open. 

. 
This means 

By modifying t h e  discussion and methods given i n  § 2, w e  could t r y  t o  
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determine t h e  accuracy of t h e  approximate methods i n  t h e  genera l  form. 
t h e  cumbersome na tu re  and the  immensity of t h e  expressions thus obtained makes 
them p r a c t i c a l l y  unusable. A comparison of t h e  numerical da t a  y i e l d s  r e l i a b l e  
and simple conclusions. These conclusions and t h e  accuracy of t h e  approximate 
methods w i l l  depend not  only on t h e  magnitude of p ,  but  a l s o  on m (substance 
of t h e  pa r t i c l e )  and on t h e  region of s c a t t e r i n g  angles  B under consideration. 
A given approximation accuracy f o r  t h e  t o t a l  i n d i c a t r i x  w i l l  be achieved f o r  
l a r g e r  p than t h e  s a m e  accuracy which would be achieved f o r  ind iv idua l  s ec t ions  
of t h e  i n d i c a t r i x .  

However, 

L e t  u s  i n v e s t i g a t e  t h e  numerical da t a  f o r  drops of water i n  t h e  v i s i b l e  
region. 
ourse lves  t o  inves t iga t ing  s c a t t e r i n g  i n  the  forward d i r e c t i o n ,  i .e . ,  s c a t t e r i n g  
angles  f3 5 90". 
s c a t t e r i n g  angles ,  from Table 13 w e  then f ind  that 97.2% of s c a t t e r e d  l i g h t  
occurs i n  t h i s  region. 
96.7%, and i n  t h e  case  B - SO", w e  c a l c u l a t e  93.2%. 

This is very important f o r  t h e  geophysical case. L e t  u s  a l s o  confine 

I f  w e  recall t h a t  t h e  d i f f r a c t e d  l i g h t  a l s o  lies wi th in  t h e  

Retaining t h e  angular region f3 2 70", w e  c a l c u l a t e  

/ 214 The quant i ty  i w a s  ca lcu la ted  according t o  formula (7.41) ,  which w a s  - a 
s i m i l a r  t o  t h e  formula (6.19) : 

&@)=$[yJ + a'O"(p)]. (7.41) 

Here T i s  t h e  quant i ty  given i n  formula given i n  (5.31), and 

When ca l cu la t ing  i , w e  confined ourse lves  t o  taking i n t o  account only the  

f i r s t  t h r e e  bundles. 
t h e  forward d i r ec t ion .  I n  add i t ion ,  w e  employed t h e  general  formulas (7.36) - 
(7.40) given previously,  keeping t h e  following phases of t h e  d i f f e r e n t  bundles 
i n  mind 

b 
They conta in  p r a c t i c a l l y  a l l  of t h e  l i g h t  s c a t t e r e d  i n  

( 0 )  Ap, = - -= 
%/a- 2 * g!* = k + 2?/,; A;), = x i 

(7.42) 

+qp 
'59 1 cos I2P (1, -/dl I * 

I n  order t o  perform ca lcu la t ions  employing (7.42), w e  compiled t a b l e s  of 

t h e  amplitudes 4- and the q u a n t i t i e s  f k  f o r  d i f f e r e n t  6. 
PY 8 

L e t  u s  now t u r n  t o  Table 22, where w e  g ive  t h e  i n t e n s i t i e s  f o r  B ca lcu la ted  
i n  (Ref. 98). 

It follows from t h i s  t a b l e  t h a t ,  although both approximate methods y i e ld  
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values which are of the same order as the precise methods, the agreement between 
the numerical data is poor. 

- 
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The approximation of the results derived from approximate calculations to 
the results derived from precise calculations is oscillatory in nature: in 
certain cases, for large p the agreement between the approximate and precise 
values is worse than for small p .  

13,6*1Oa 

2,39. 103 

691 

277 

141 

75,1 

In physical terms, it is apparent that allowance for interference must 
improve the computational results. 
this conclusion 
the allowance for interference makes the result worse). 

The data given in Table 22 do not corroborate 
(along with an improvement in certain cases, in other cases 

17,O.lW 45.9.103 41,7.1@ 32,9.10s 195.103 

4,69. I03 1,21 101 1,65* I@ 0,410- I@ 9,s .  10s 

202 685 867 584 

142 226 513 759 1.03 * 10" 

166 158 246 207 

50,3 129 1 26 130 333 
I 

I 7,8 

44,O I 25,1 i 23,9 

27.6 

59J 9,o , 

TABLE 22 

P " 2 0  I p = 30 I 
I p =  15 

43,3 97.9 

228 630 67'0 I ::: 

I 

228.10s 

4,M. 103 

229 

16.1 

227 

105 

16,4 3,49 

3.27 
I 
I 29'9 

5'3 I 
I 

3,iO 34.3 

3,30 242 

4 

206. lo! 

6.54 - lo! 

1.18 - 10 

248 

97,O 

9,34 

93  1 

I 

1215 

This fact is also caused by the oscillatory nature of the approximation of the 1216 
precise formulas to the approximate formulas (the corresponding p = a). 

It could be expected that p 10 - 15 is large enough that in this case 
the asymptotic formulas could be employed. 
that the convergence of the precise series given in Chapter I1 is so slow that 
in actuality even for p = 30 we cannot employ the asymptotic (approximate) 
formulas with sufficient accuracy. 

However, it follows from Table 22 

However, it is very important to establish the fact that for any p the 
precise and asymptotic calculations coincide with the necessary accuracy. 
desire to answer this question compels us to perform precise calculations for 

A 
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p = 60 (Table 21) and to compare them with the approximate calculations. The 
numerical data obtained are given in Table 23. Several important conclusions 
may be drawn from this table. The basic conclusion consists of the fact that 
the approximation method which we developed for calculating the indicatrixes 
is sufficiently accurate for practical purposes for p = 60. 

TABLE 23 

In the region 6 < 60° ,  which contains 95.7% of the light which is scattered 
by a drop, the simple approximate formula (7 .42 )  represents the indicatrix 
within an accuracy of 10 - 12%. This means that the total accuracy of our 
calculations will be about 1 4  - 15%.  
and the tables thus mean that, for p 2 60, we can reliably employ the approxima- 
tion method (b) for calculating the iLdicatrixes of individual particles. 

This accuracy is acceptable for our problems, 

It must be noted that usually we are not interested in the indicatrixes 
of individual particles, but rather the scattering indicatrixes in real clouds. 
Since p % 100 for clouds, when averaging is performed over different p, the 
interference term practically disappears. This means that, when calculating 
the scattering indicatrixes of cloud systems, we cannot take into account 
interference between fluxes from the very beginning, but must employ a simple 
system of combining the intensities. 

/217 

Employing the experimental data on the distribution functions of particles 
in clouds and rain, we have calculated the scattering indicatrixes in these 
systems. Figure 58 shows the indicatrixes for the clouds St and N s .  The 
indicatrixes are very greatly extended. 
obtained for p = 60 (Figure 5 6 ) .  
of the indicatrixes f o r  St and N s  is due to the difference in the particle 
sizes in both cloud forms. 

They are very similar to the one we 
The significant difference between the forms 

The drops are much larger in N s .  

-c --------- --- NS 
1 

Figure 58. Scattering Indicatrixes 
in the Clouds St and N s .  

Employing the formula ( 6 . 5 )  
for the attenuation coefficient 
and the considerations on the 
interference of bundles, which 
were developed above, we can obtain 
an interesting asymptotic formula 
for k for the case of large trans- 
parent particles. 

Regarding the amplitude of 
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t he  f i e l d  sca t t e red  forward, A 

bundles, we  r ead i ly  obta in  

as the  sum of t h e  amplitudes of t he  f i r s t  t h ree  B' 

( 7 . 4 3 )  

W e  may w r i t e  T without an index here  (p o r  s) ,  having i n  mind any of these  
Taking t h e  f a c t  i n t o  indexes,  s ince  a l l  ~ ( k )  = ~ ( k )  i n  the  d i r ec t ion  B = 0. 

account t h a t  f l (0)  = 0, f2 (0 )  = -(m - 1)  and t h a t  Im(eiT) = 0, we r ead i ly  f i n d  

t h a t  

P S 

( 7 . 4 4 )  

A r e f l e c t e d  bundle makes no cont r ibu t ion  t o  k. I f  w e  employ the  formula /218 
( 5 . 1 6 )  f o r  ~ ( 2 ) ~  the  latter expression f o r  k can be r ewr i t t en  i n  the  following 
s u i t a b l e  form: 

( 7 . 4 4 * )  

Although formula (7 .44*)  c o r r e c t l y  descr ibes  the  behavior of K(p) f o r  l a r g e  p ,  
t he  agreement between the  values  of k calculated according t o  (7 .44*)  and those 
given i n  Table 1 7  i s  poor. Such an agreement must occur f o r  values  of p which 
are l a r g e r  than those given i n  Table 1 7 .  We should note  t h a t  i n  the  case m % 1, 
the  formula f o r  k can be wr i t t en  very simply: 

( 7 . 4 5 )  

It i s  important t o  note  t h a t  both main parameters of t he  problem m and p 
are only contained i n  the  form of 6 = p(m - 1). 

The parameters p and m a r e  the  s i m i l a r i t y  cr i ter ia  of our problem. This 
means t h a t  f o r  i nden t i ca l  p and m the  sca t t e r ing  p i c tu re s  w i l l  be similar ( the  
s i m i l a r i t y  c o e f f i c i e n t  -- square of t he  rad ius  r a t i o s ) .  

I n  the  general  case, both parameters p and m are independent, and the  
number of independent parameters cannot be decreased. However, i n  t he  case 
m 'L 1, as w e  have seen, the  behavior of k(p) may be described by only one 
parameter 6 .  

The p o s s i b i l i t y  of reducing the  s i m i l a r i t y  t o  one parameter i n  the  case 

The amplitude of a r ay  passing through the  center  
m 'L 1 is not  acc identa l .  
phase of t h e  wave change. 

acquires  t h e  f a c t o r  d 

by a f a c t o r  of 26. 
changes and the  na ture  of t h e  s c a t t e r i n g  i s  determined by the  phase change, 
i .e.,  by t h e  quant i ty  6. 

During t h e  passage of a p a r t i c l e ,  t h e  amplitude and 

4m - = ds - (see Chapter V ) ,  and t h e  phase increases  
(m + 112 P 

This means t h a t  i n  the  case m % 1 the  amplitude bare ly  

L e t  us  ca l l  t he  reduct ion of t he  problem t o  one independent parameter 6 
t he  s i m i l a r i t y  ru l e .  
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The curves shown i n  Figure 44 and, i n  p a r t i c u l a r ,  t he  pos i t i on  of t he  main 
maximum on these  curves ( t h e  divergence of p a r t s  of t he  curves is  not  important) 
subs t an t i a t e  our s i m i l a r i t y  r u l e ,  not  only f o r  p >>l -- as follows from ( 7 . 4 5 )  -- 
but a l s o  f o r  p 'L 1 i n  the  case m - 2. 
pos i t i on  of t h e  f irst  (main) maximum f o r  any of t he  curves may be determined by 1219 
t he  following formula: 

I f  the s i m i l a r i t y  r u l e  holds,  then t h e  

( 7 . 4 6 )  

where 6:;; i s  the  va lue  of 6 a t  the  pos i t i on  of t he  maximum f o r  one  of t he  

curves.  Thus, f o r  m - 2 w e  

ob ta in  t h e  following formula 

I n  t h e  case m = 1 . 3 3 ,  w e  f ind  t h a t  6 ( l )  = 2 . 0 .  max 

( 7 . 4 6 * )  

For m = 1 . 4 4 ;  1 . 5 5  and 2 .00 ,  t h i s  y i e l d s  4 . 5 ;  3 . 6  and 2 . 0 .  For t h e  second and 
t h i r d  case (within t h e  l i m i t s  of poss ib le  accuracy) t h e  agreement i s  complete 
(see page 126) .  
l as t  s ign ,  i .e. ,  about 2% i n  a l l .  

For m = 1 . 4 4  t he  divergence i s  within the u n i t  of the 

W e  can thus see t h a t  t h e  s i m i l a r i t y  r u l e  provides us  with a very simple 
and p rec i se  method f o r  determining t h e  general  p a t t e r n  of t he  curves K ( p )  f o r  
d i f f e r e n t  m i n  the  case of s m a l l  (m - 1). The curve f o r  m = 1 . 3 3  (Figure 4 3 )  
may be used, f o r  example, as the  "standard" curve. 

All t he  s ta tements  given above p e r t a i n  t o  determining t h e  pos i t i on  of t h e  
f i r s t  maximum. With respec t  t o  its magnitude, with an increase  i n  (m - 1) from 
zero t o  0.6, i t  increases  approximately l i n e a r l y ,  and from then on more slowly. 
The na tu re  of the  dependences of p(1) and K(p)  on (m - 1) is  shown i n  Figure 5 9 .  max 

Based on these  curves,  w e  can r e a d i l y  determine the  magnitude and pos i t ion  
of t he  f i r s t  maximum f o r  any m < 2. The pos i t i on  of t he  subsequent extremums 
can be found, if we take  the  f a c t  i n t o  account t h a t  6(4) = 3 . 8 ;  6(2) = 5 . 4 ;  

6(?) = 7 . 0  and 6(2) = 8 . 5  follow from t h e  da t a  f o r  m = 1 . 3 3 .  

K ( p )  a t  these  extremums can be approximately determined i f  w e  employ the  d a t a  
f o r  m = 1.21,  which w e  indicated previously,  along with t h e  da t a  on m = 1 . 3 3 .  
W e  should r e c a l l  t h a t  w e  obtained va lues  of K ( p )  equal  t o  3 . 6 4 ;  1 . 6 5 ;  2 . 7 0  and 
1 . 8 4 ,  respec t ive ly ,  f o r  p equal l ing  9 . 5 ;  1 7 . 6 ;  25.7 and 3 3 . 4 .  For s m a l l  (m - l), 
we can approximately assume l i n e a r  changes i n  K(p)  with (m - 1) and f o r  o ther  
extremums, i n  accordance with t h e  r e c t i l i n e a r  p a r t  of t h e  curve f o r  t he  f i r s t  
maximum (Figure 5 9 ) .  

m m  max 
The quant i ty  m m  rnax 

W e  should add t h a t  w e  have a l ready  discussed t h e  case m 'L 1 i n  Chapter V I I I .  

I n t e r f e rence  between bundles leads  t o  t h e  occurrence of s eve ra l  maxima and 
minima i n  the  ind ica t r ixes .  P. Y a .  Bokin, Y e .  M. Brumberg, A. A.  Lebedev and / 2 2 0  
V. I. Chernyayev obtained these  maxima i n  t h e  form of wide r ings  (up t o  t e n  
and more) around t h e  pro jec tor  ray  [ i n  t h e  d i r e c t i o n  of t he  source (Ref. 8 3 ) l .  
Ordinar i ly ,  t he  i n d i c a t r i x e s  do not  have an in t e r f e rence  nature:  it is  blurred 
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45 t5 
j: 

TABLE 24 

i n  t h e  v i s i b l e  region. 
small p a r t i c l e ,  17 = 1. For an extremely 
l a r g e  p a r t i c l e ,  it follows from Table 13  
t h a t  l i g h t  which is s c a t t e r e d  backwards 
w i l l  be  0.056 p o s i t i v e  u n i t s ,  and l i g h t  
s c a t t e r e d  forward w i l l  be  0.944 p o s i t i v e  
u n i t s  ( d i f f r a c t e d  l i g h t ;  i n  f r a c t i o n s  
of .rra2). 

For an extremely /221 

Consequently, TI = 34.7. 

f )  

I n  t h e  majori ty  of s t u d i e s ,  l i g h t  which is  s c a t t e r e d  a t  r i g h t  angles i s  
inves t iga t ed .  G. I. Pokrovskiy (Ref. 99) w a s  one of t h e  f i r s t  authors  who 
systematical ly  s tud ied  l i g h t  which is s c a t t e r e d  i n  d i f f e r e n t  d i r ec t ions .  H e  
produced fog by condensing je ts  of water vapor i n  t h e  air. 
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The drops w e r e  s m a l l  i n  (Ref. 99).  The values  f o r  p given i n  t h i s  study 
are about 0.5 - 0.7. I n  t h e  art icle (Ref. 100) G. I. Pokrovskiy presented the  
r e s u l t s  derived from s c a t t e r i n g  by l a r g e r  drops (a % 1 1 - 100 11). The r e s u l t s  
presented both i n  (Ref. 99) and i n  (Ref. 100) agree with the  t h e o r e t i c a l  
ca lcu la t ions .  I n  s e v e r a l  o ther  i nves t iga t ions ,  G. I. Pokrovskiy s tudied  a g rea t  
many important problems e n t a i l e d  i n  the  op t i c s  of t u rb id  media [see (Ref. 101, 
102, 103, 104) and o the r s ] .  

The most de t a i l ed  q u a n t i t a t i v e  inves t iga t ion  of t h e  ind ica t r ixes  f o r  l a r g e  
drops w a s  performed i n  (Ref. 98). 

The fog t o  be s tudied  w a s  created i n  a chamber F by quickly connecting i t  
with a l a rge  ves se l  which w a s  f i r s t  evacuated up t o  a c e r t a i n  pressure  (Figure 
60). The authors s t a t e d  t h a t  by con t ro l l i ng  the  degree of expansion, and a l s o  
the  composition of the dust  p a r t i c l e s ,  they w e r e  ab l e  t o  produce uniform drops 
having a given s i z e .  
cont ro l led  by measuring the  corona observed a t  a g rea t  d i s tance  by means of a 
l i g h t  source S a l e n s  L and a measuring theodol i te  Th. The c l e a r l y  defined 

r ings  of the corona, whose pos i t i on  d id  no t  change during the  observat ional  
per iod,  pointed t o  the uniformity of t he  fog and i t s  s t a b i l i t y .  

1222 

The s i z e  of t h e  drops w a s  determined and cons tan t ly  

1' 1' 

Figure 60. Diagram Showing the  
Apparatus f o r  Dete'rmining Ind ica t r ixes  
i n  Fog. 

I n  accordance with V I ,  2 clear 
coronas can only be observed f o r  
s u f f i c i e n t l y  l a r g e  drops (a > 2 ~ ) .  The 
s i z e  of t he  drops with a 21.1 w a s  
determined according t o  the  Stokes 
formula with cor rec t ions .  1 

A spectrometr ic  s tand ,  i n  the  1223 
center  of which a chamber F wi th  fog 
w a s  loca ted ,  w a s  employed t o  measure 
the  i n t e n s i t y  of l i g h t  s c a t t e r e d  by 
drops. One of t he  s tand  arms he ld  a 
i l lumina t ing  device,  cons is t ing  of t he  
l i g h t  source S2, a l ens  L with a l a r g e  2 
aper ture ,  and a diaphragm D'D. The 
o the r  arm held a recording device 
cons is t ing  of a col l imat ion tube T,  a 
monochromator M y  and a R. S. photocel l .  
The photoce l l  readings through the  
ampl i f ie r  w e r e  recorded by the  galvano- 
meter. 

It must be noted t h a t  t h e  e f f e c t i v e  volume V,  from which the  s c a t t e r e d  
l i g h t  e n t e r s  t h e  rece iv ing  device,  changes as the  s c a t t e r i n g  angle  changes. 

(')A comparison of t he  r e s u l t s  derived from o p t i c a l  measurements with 
measurements of the  rate of decrease ( i n  the  measurement region where both methods 
could be used) showed t h a t  t he  divergence of t he  r a d i i  determined by both methods 
d id  not  exceed 5%. 
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Figure,Gl..Comparison of Computational 
and Experimental Resul ts  f o r  Drops of 
Water i n  the  Vis ib le  Region. 

0 - ca lcu la ted  po in t s  f o r  p = 10; 
A - experimental po in t s  f o r  p = 10, 
1 2 ;  f o r  t he  p a r t  f3 (0,  50), t h e  scale 
is given on the  l e f t ;  f o r  t he  remain- 
ing  s c a t t e r i n g  angles ,  i t  is  given 
on the  r i g h t .  

Figure 62. Comparison of Computational 
and Experimental Resul ts  f o r  Drops of 
Water i n  the  Vis ib le  Region. 

0 - ca lcu la ted  po in t s  f o r  p = 20; 
A - experimental  po in t s  f o r  p = 20, 
22. 

It is  apparent t h a t  

where V is  the  e f f e c t i v e  volume during perpendicular observat ions.  0 

Thus, t he  galvanometer readings mul t ip l ied  by s i n  13 were compared with 
theory. 

The r e s u l t s  derived from the  measurements coincided very w e l l  with theory. 

W e  have i l l u s t r a t e d  t h i s  agreement i n  Figure 61 and 62, where the  t h e o r e t i c a l  
curves ,  are shown by t h e  dashed l i n e ,  and the  experimental  curves are shown by 
the  s o l i d  l i n e .  It must a l s o  be noted t h a t  t he  values  of p i n  t he  experiments 
did not  exac t ly  coincide with t h e  rounded off  values  of p assumed i n  the  
ca l cu la t ions ,  
f l ucu ta t ing  change i n  i n t e n s i t y  with the  angle f3 which is  c h a r a c t e r i s t i c  f o r  
t he  t h e o r e t i c a l  curves. These ( in te r fe rence)  f luc tua t ions  of t h e  t h e o r e t i c a l  
curves are due t o  t h e  s t r i c t l y  monochromatic na tu re  of t he  fog,  assumed i n  t h e  
ca lcu la t ions .  

The experimental  curves are smooth; they do not  have the  

The general  p a t t e r n  of both curves c lose ly  coincides i n  every case ( the  
devia t ion  a t  separa te  poin ts  does not  exceed 2 1 7 % ) .  
s l i g h t  d i f f e rence  a t  s m a l l  angles with inaccuracy with which t h e  volume i s  
corrected a t  s m a l l  f3. 

The authors  connect a 
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The s c a t t e r i n g  i n d i c a t r i x  i n  "pure" atmosphere has been s tudied  by many 
authors .  
o ther ,  i n  accordance with t h e  d i f f e r i n g  content of admixtures a t  the  observat ional  
po in t .  The general  r e s u l t  is  as follows: t he  s c a t t e r i n g  i n d i c a t r i x  is g rea t ly  
extended. 

The d a t a  obtained by d i f f e r e n t  authors d i f f e r  somewhat from each 

I n  Figure 63 we  present  t he  i n d i c a t r i x  obtained by Y e .  V. Pyaskovskaya- /225 
Fesenkova during observations with a b lue  Schott  f i l t e r  (Ref. 77, 195) ( i n  the  
v i c i n i t y  of the  town of Ivanovo; summer). 
(observed); curves 111 and I1 represent  t he  Rayleigh and aerosol  i n d i c a t r i x e s  
(ca lcu la ted) .  V. G. Fesenkov assumes the  following empir ical  formula f o r  t h i s  
i n d i c a t r i x :  

Curve I represents  the  t o t a l  i n d i c a t r i x  

~(B)=1$-1 ,652co~ 'B+1 ,214CO~~.  
(7.47) 

We would l i k e  t o  note  the  i n d i c a t r i x  obtained by H. 6. Boldyrev by analyzing 
the  d a t a  on the  br ightness  d i s t r i b u t i o n  over t he  sky (Ref. 89). 

The empir ical  formula of Shenberg is frequent ly  used t o  charac te r ize  
the  atmospheric s c a t t e r i n g  proper t ies :  

r(B, =' 1 + p  cos p + qcos9F. (7.48) 

The constants  p and q are se l ec t ed  from observations (Shenberg assumes the  
following: p = 2.7;  q = 3.0). 

The i n d i c a t r i x  obtained by I. N. Yaroslavtsev (Ref. 106) (town of Tashkent, 
summer) , who processed h i s  observat ions based on the  Shenberg formula [employing 
the  ca l cu la t ions  of A. N. Gordov (2ef .  107)] ,  is shown i n  Figure 64 ( i n  the  
X region 0.525-3 1-1. 

V. A. K r a t t  (Ref. 68) assumes t h a t  the  Shenberg formula must be corrected 
as follows f o r  l a r g e  values  of the  M i e  e f f e c t :  

where v(B) = e -38 - e-? (6 i n  rad ians) .  

The reader  w i l l  f i nd  a descr ip t ion  of the  methods f o r  determining p and q ,  
t h e i r  values f o r  Tashkent, t he  dependence of these  values  on weather condi t ions ,  
etc. i n  h i s  study (Ref. 68). 

The reader  w i l l  f i nd  more de t a i l ed  da t a  on the  s c a t t e r i n g  i n d i c a t r i x  i n  a 
11 pure" atmosphere i n  the  o r i g i n a l  works of V. G. Fesenkova, N. N. Ka l i t i na ,  
Y e .  V. Pyaskovskoy-Fesenkovoy, I. N. Yaroslavtseva,  N. G. Boldyreva, and others .  . 
According t o  V. V. Shuleykin (Ref. 35),  t he  s c a t t e r i n g  i n d i c a t r i x  of sea water 
may be  expressed by a curve l i k e  type a i n  Figure 65. 
which w a s  experimentally obtained byA. A .  Gershun f o r  two seas  within the  
USSR (curve b i n  Figure 65 [Ref. 1081). 

It is c lose  t o  the  curve 

A. A. Gershun ( together  wi th  M. M. Gurevich) developed a laboratory /22J 
device f o r  measuring i n d i c a t r i x e s  i n  sea w a t e r  tests (Ref. 92). It is shown i n  

165 



Figure 66. 
ments a l s o  requi re  a cor rec t ion  of t h e  volume. 

The captions given on t h e  f i g u r e  expla in  the  diagram. The measure- 

-z ec0 
w 

Figure 63. I n d i c a t r i x  of Light 
Sca t te r ing  i n  t h e  Atmosphere. 

I - complete curve; I1 - aerosol  
s ec t ion ;  I11 - Rayleigh s c a t t e r i n g  
i n  a "pure" atmosphere. 

Figure 65. I n d i c a t r i x  f o r  Sea Water. 

(a) - V. V. Shuleykina; (b) - experi-  
mental i n d i c a t r i x  of A. A. Gershun. 

Figure 67. Comparison of Experimental 
Curves f o r  t h e  I n d i c a t r i x  of Sea Water 
(1, 2 ,  3)  with t h e  Theoret ical  Curves 
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(1, 11, 111). 

Figure 64. Typical I n d i c a t r i x  f o r  
I t  pure'' atmosphere. 

lamp 

Figure 66. 
f o r  Determining Indica t r ixes  i n  Sea 
Water T e s t s .  

Diagram Showing t h e  Device 

Figure 67 presents  t h e  r e s u l t s  
derived from measurements f o r  t h r e e  
d i f f e r e n t  tests (1, 2 , 3 ) ,  compared 
with t h e  t h e o r e t i c a l  curves f o r  p a r t i c l e s  
of d i f f e r e n t  s i z e s  (I, 11, 111). The 
experimental and t h e o r e t i c a l  curves 
have a p a r a l l e l  behavior (Ref. 9 2 ) .  

CHAPTER V I 1 1  1228 

PARTICLES WITH ELECTRICAL PROP- 
ERTIES DEVIATING SLIGHTLY FROM 
THE SURROUNDING MEDIUM PROPERTIES 

§ 1. Fundamental Equation 

I n  t h e  preceding chapters  w e  
presented a p r e c i s e  s o l u t i o n  f o r  t h e  
problem of d i f f r a c t i o n  by a sphere,  and 



presented d i f f e r e n t  approximation methods f o r  obtaining numerical data .  
of cu rv i l i nea r  coordinates ,  i n  which t h e  boundary condi t ions of t h e  problem can 
be described i n  the  s implest  way, l i e  a t  the  b a s i s  of t h e  method presented i n  
Chapter 11. It is  important t h a t  t h i s  method is not  extended t o  p a r t i c l e s  
having an i r r e g u l a r  f0rm.l This is the  main drawback of t he  method developed 
i n  Chapter 11. Another drawback lies i n  the  cumbersome na ture  of t he  f i n a l  
formulas, even f o r  t he  case of s m a l l  p a r t i c l e s  (p 'L 1). 

The use 

I n  t h i s  chapter we  s h a l l  present  another method f o r  i nves t iga t ing  the  
problem of s c a t t e r i n g  of l i g h t  by a p a r t i c l e  -- t he  method of t he  i n t e g r a l  
d i f f e r e n t i a l  equation. W e  s h a l l  follow our s t u d i e s  (Ref. 109, 110, 124). 

W e  can apply t h i s  general  method t o  p a r t i c l e s  whose electrical  proper t ies  
d i f f e r  very l i t t l e  from the  p rope r t i e s  of t he  surrounding medium. This case is 
very important f o r  admixtures i n  the  atmosphere and t h e  hydrosphere. A s  w e  
s h a l l  see la ter ,  t h i s  method enables us t o  obtain a simple so lu t ion  f o r  spheres 
with p n, 1 and f o r  p a r t i c l e s  having a non-spherical form -- rods and t a b l e t s .  

L e t  us t u rn  t o  the  Maxwell equation (1.3) t o  der ive  the  fundamental i n t e g r a l  
equation. 

L e t  us introduce t h e  Hertz vec tor ,  which is  r e l a t e d  t o  the  e l e c t r i c  and I229  
magnetic f i e l d s  by the  following r e l a t ionsh ips  

E - V  divZ +$z, 
kt0 H=- rot Z. 
C 

From t h e  Maxwell equat ion,  w e  f i n d  t h a t  Z s a t i s f i e s  the  following equation 

The so lu t ion  of t h e  l a t t e r  equat ion,  which decreases rap id ly  towards i n f i n i t y  
w i l l  be  as follows, as i s  known: 

(')A formal so lu t ion  of the  problem i n  series w a s  given by Moglich (Ref. 
111) f o r  e l l i p s o i d s .  However, i t  w a s  very complex and could not  be  used. 
Numerical da t a  derived from h i s  formulas have not  been published. 

( 2 ) W e  would l i k e  t o  c a l l  the  a t t e n t i o n  of t he  reader  t o  the  f a c t  t h a t  t h e  
ind ices  before  i (imaginary u n i t )  i n  t h i s  chapter  are j u s t  t he  opposi te  of t he  
ind ices  i n  (Ref. 109) and (Ref. 110). This is due t o  the  f a c t  t h a t  i n  t h i s  
chapter  w e  have re ta ined  t h e  s a m e  t i m e  f a c t o r  eiat as i n  a l l  preceding chapters ,  
whereas i n  (Ref. 109) and (Ref, 110) t he  t i m e  f a c t o r  had the  form e - i w t .  I n  
order  t o  change t o  t h e  nota t ion  i n  (Ref. 109) and (UO), it  is s u f f i c i e n t  t o  
replace a l l  complex expressions by t h e  conjugate expressions.  
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H e r e  R = Ir’ - rl is t h e  d is tance  between t h e  observat ional  p o i n t  and t h e  poin t  
at which t h e  source i s  located (element of t h e  p a r t i c l e  region polar ized by an 
electromagnetic wave). 
by t h e  sources (over t h e  e n t i r e  p a r t i c l e ) .  

I n t e g r a t i o n  is performed over the  e n t i r e  region occupied 

We have t h e  following f o r  an e lectr ic  f i e l d  produced by polar ized elements 
of t h e  region: 

For t h e  t o t a l  electric f i e l d  both i n s i d e  and outs ide  t h e  sphere,  w e  ob ta in  
t h e  following i n t e g r a l  equation 

E (r) = E,,e - lkr -/- 
do‘ - 4xp (r) E (r). f p (r’) E (r’) e--(kR 

R +rot rot 

I 2 3 0  W e  s h a l l  determine t h e  e lec t r ic  f i e l d  as t h e  s o l u t i o n  of t h i s  i n t e g r a l  - 
equation. Its phys ica l  meaning i s  very simple. 

It is  known t h a t  t he  e l e c t r i c  f i e l d  produced by a d ipole  with t h e  moment 
p a t  a poin t  located a t  a d is tance  of R from t h e  dipole  w i l l  be 

E = rot r o t l ;  R 
where pEdv’ i s  the  d ipole  moment of an element of t h e  region polar ized by t h e  
electromagnetic wave. Thus, according t o  equation (8.11, t h e  e lectr ic  f i e l d  a t  
a c e r t a i n  poin t  i n  space i s  the  sum of t h e  f i e l d  produced by t h e  e x t e r n a l  bodies 
(sources of l i g h t )  E e- ikr ,  t h e  f i e l d s  of t he  polar ized elements of t he  p a r t i c l e s  0 

f r o t r o t e  R dv‘ ’ 
and t h e  f i e l d s  of t h e  screening ( f i c t i t i o u s )  charges on t h e  sur face  of t h e  
p a r t i c l e  -- 4np.E. 

When the  d i f f e r e n t i a l  equations are solved, i t  i s  necessary t h a t  t h e  
boundary condi t ions be  s a t i s f i e d ,  i n  addi t ion t o  t h e  equations. 

When an i n t e g r a l  equation is solved, t he  corresponding requirements are 
s a t i s f i e d  automatically.  
t h e  e lectr ic  f i e l d  i s  t h e  superposi t ion of t h e  e x t e r n a l  f i e l d  and the  f i e l d  of 
t h e  dipoles  which occupy t h e  s c a t t e r i n g  p a r t i c l e .  Since each t e r m  of t h i s  sum 
s a t i s f i e s  t h e  M a x w e l l  equation and t h e  boundary condi t ions everywhere, t h e  sum 
a l s o  s a t i s f i e s  them everywhere. 

I n  our case, f o r  example, w e  have already seen t h a t  

Based on considerat ions which w i l l  be c l a r i f i e d  later,  ins tead  of t h e  
i n t e g r a l  equation ( fo r  t he  mean electric f i e l d ) ,  i t  is  more advantageous t o  
study t h e  i n t e g r a l  equation which is obtained from (8.1) f o r  t h e  e f f e c t i v e  
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W e  may introduce the la t te r  according t o  t h e  following e f f  ' electric f i e l d  E 

formula 

I&pE-j-;I.  

1,77 
1,71 
1.56 

0% 

W e  a l s o  r e a d i l y  f i n d  t h a t  

0,061 
0,056 
0,044 

0 s  

and 

0 
0 
0 

0 

(8.3) 

0 
0.W 
0.037 

(h030 

Equation (8.3) i s  t h e  fundamental equation of our problem. We should note  
t h a t  ou ts ide  of t h e  p a r t i c l e  t h e  e f f e c t i v e  f i e l d  coincides with t h e  mean f i e l d .  

The parameter a contained i n  t h e  i n t e g r a l  equarion (8.3) is i n  a c t u a l i t y  

Thus, both 
very small  f o r  a l l  t h e  cases which are of i n t e r e s t  i n  p rac t i ce .  
w e  present  t he  value of t h e  modulus la1 f o r  d i f f e r e n t  substances. 
f o r  t h e  d i e l e c t r i c  constant ,  and f o r  e lec t roconduct iv i ty ,  w e  select only t h e i r  
e l e c t r o n  p a r t .  

I n  Table 25 

The ion  p a r t  of conduct ivi ty ,  and a l s o  the  constant dipole  moments of t h e  
molecules a r e  excluded from the  examination, s i n c e  n e i t h e r  t h e  ions nor t h e  
molecules w i l l  be a b l e  t o  o s c i l l a t e  due to  t h e  rap id ly  changing e lectr ic  f i e l d  
of t h e  l i g h t  wave. 

Sol id  dust  p a r t i c l e s  are encountered i n  t h e  atmosphere, i n  addi t ion  t o  
water, ice ,  and small drops of d i f f e r e n t  i on  so lu t ions  (which Table 5 gives as 
HC1). The r e f r a c t i o n  c o e f f i c i e n t  of t h e  l a t te r  i s  no t  usua l ly  known. 

TABLE 25. ELECTRIC PROPERTIES OF ADMIXTURES 

I n  the atmosphere: 
Water...... 
Ice........ 
HC1. ....... 

I n  t h e  hydrosphere : 
A i r .  ....... 

I 
8 I 

I 
8 

I f  w e  assume t h a t  t h e  following holds f o r  them 

leG I <  1, 
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then a w i l l  be  much smaller than uni ty  f o r  them, since t h e i r  e l e c t r o n  conductivity 
i s  usua l ly  smaller than 10 ohm-' cm- I  (semiconductor) and 

IO 1 
sec - < form- lo's-. 

0 

W e  s h a l l  t r y  t o  f i n d  t h e  s o l u t i o n  of t h e  i n t e g r a l  equation (8.3) i n  t h e  
form of series i n  terms of a. 

L e t  us se t  

W e  thus obta in  from equation (8.3): 

and s o  on. 

I f  w e  know E e f f ,  w e  can determine t h e  mean e lec t r ic  f i e l d  E and then t h e  

magnetic f i e l d  H. 

The i n t e g r a l  equation equation determines E i n  t h e  e n t i r e  space,  both 

I n  t h e  l a t t e r  case, t h e  equation can be 
ef f 

i n s i d e  of and outs ide  of t h e  sphere. 
s imp l i f i ed ,  s i n c e  the  f i e l d  outs ide of t h e  sphere i s  usual ly  measured a t  
d is tances  which are considerably g r e a t e r  than i t s  radius  ( r  >>a) .  

W e  obtain t h e  following f o r  t h e  f i e l d  of a s c a t t e r e d  wave: 

E IC= -I - aks (R,, (RGf h-E,f k-'kR dv'. 
scat r 

Here R 

point .  

i s  t h e  u n i t  vec tor  d i rec ted  from t h e  p a r t i c l e  cen te r  t o  t h e  observation 0 

W e  have thus removed from t h e  i n t e g r a l  t h e  slowly changing f a c t o r  l /Rand 
subs t i tu ted  i t s  mean value l / r ( r  -- dis tance  from t h e  observat ional  point  t o  t h e  
cen te r  of t h e  sphere). 

The f i e l d  of t h e  s c a t t e r e d  wave may a l s o  be  represented i n  t h e  form of a 
series i n  terms of a:  

+ ... - (0) (1) 2 (2) 
+ aEscat + a %car: Escat Escat 

- 

(0) = 0.1 
scat '  i.e* 9 Escat The zero term must be absent i n  t h e  expansion of E 

W e  have t h e  following i n  accordance with t h e  formulas (8.7) and (8.4): 

1233 

- (O) in  t h e  form of a s c a t t e r e d  scat Escat ("More prec ise ly  , w e  measure E 
wave f i e l d .  
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and s o  on. 

I n  the  last ana lys i s ,  w e  are i n t e r e s t e d  i n  t h e  components of t h e  s c a t t e r e d  
f i e l d  with respec t  t o  the  sphe r i ca l  axes 8 and 4. 
expressions E (i) scat. 

L e t  us employ i and i 

Thus, t he  f i r s t  term i n  the  

, which contains  Ro, n a t u r a l l y  drops out .  

t o  designate  the  u n i t  vec tors  of t he  axes 6 and 4 e 4 
i n  t h e  sphe r i ca l  coordinate  system. 
of t h e  s c a t t e r e d  f i e l d  over these  axes: 

W e  ob ta in  t h e  following f o r  t he  pro jec t ion  

The following vec tor  is indica ted  by A: 

A = JE f-fkRdu'. (8.10) ef 

The vec tor  A can be  represented i n  the  form of series with respect  t o  ci, 
which w i l l  be similar t o  t h e  series f o r  Eeff :  

A = A") + aA(V + 02A(9) + . . . (8.11) 

It is  c l e a r ,  without any ca l cu la t ions ,  t h a t  t he  smallness of ci is  i n s u f f i -  
c i e n t  f o r  the  convergence of the  series described here .  
physical ly  depends on the  f a c t  t h a t  t h e  ex te rna l  f i e l d  exc i t e s  s m a l l  e lectric 
moments i n  t h e  molecules. However, t he  f i e l d  produced by the  molecules w i l l  
only be s m a l l  i f  t he  amount of molecules themselves i s  s u f f i c i e n t l y  s m a l l .  
Therefore,  t he  series described can diverge f o r  l a r g e  spheres.  
a, t h e  l a te r  t h i s  divergence occurs.  
ind ica ted  above, i t  may be assumed t h a t  t he  region of app l i ca t ion  f o r  t he  method 
advanced i s  q u i t e  wide. 

The smallness of 01 

The smaller i s  
I n  view of t h e  smallness of a, which w a s  

§ 2. F i r s t  Approximation f o r  t he  Sphere - I 2 3 4  

(a)  E f fec t ive  F ie ld  Within the  Sphere. I n  order  t o  ca l cu la t e  t he  f i r s t  
approximation i n  a sca t t e red  f i e l d ,  we  must take  t h e  zero approximation fo? the  
e f f e c t i v e  f i e l d .  Thus, w e  may set 

E - Eoe-l@r-wt), 
eff- 

equal  t o  the  f i e l d  of t he  inc ident  wave. e f f  i .e.,  w e  set E 

(b) Sca t te red  F ie ld .  According t o  (8.8), we  have 

(8.12) 
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and 

We should recall t h a t  t h e  i n t e g r a l  is extended over t h e  sphere,  r' is t h e  
r ad ius  vec tor  of t h e  v a r i a b l e  point  M within t h e  sphere;  R is  t h e  d is tance  from 
t h i s  po in t  t o  an i n f i n i t e l y  removed observat ional  point .  

The vec tor  A i n  t h i s  approximation w i l l  be  

A0 = Eo# (B). 
The integra.nd i n  f '(B) depends only on t h e  two vectors  k and Ro. 

draw t h e  coordinate plane XZ through t h e  plane of t h e  vectors  lc and R 

le t  us select t h e  x-axis so  t h a t  i t  b i s e c t s  t h e  angle (a, Ro) = 8 (Figure 68). 

Recall ing t h a t  r i s  t h e  d is tance  from t h e  center  of t h e  sphere t o  t h e  observa- 
t i o n a l  po in t ,  w e  r e a d i l y  obta in  

L e t  us 

and 0' 

B B 
2 2 Thus, w e  have replaced R by r - d,  where d = x cos - - z s i n  - i s  t h e  d is tance  

from M t o  t h e  plane passing through t h e  center  of t h e  sphere perpendicularly t o  

Ro ( t h e  plane AA), and k r '  has been replaced by k ( x cos - + z s i n  B 2) * B 
2 

W e  now obta in  t h e  following f o r  f ' (B):  

B Here q = 2ak s i n  - v = 2' 3 
7ra3 i s  t h e  volume of t h e  sphere. 

F ina l ly ,  t h e  s c a t t e r e d  f i e l d  from t h e  sphere w i l l  be as follows i n  t h e  
f i r s t  approximation: 

where w e  have designated t h e  following quant i ty  by f ( q )  
3 
-(sin q - q cosg). 48 (8.15) 

For computational s impl i c i ty ,  w e  must keep t h e  f a c t  i n  mind t h a t  

(8.16) 
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i 

0,801 0,9375 
I,OO' 0.9035 

1,401 0,8169 
1,20 0,8627 

Figure 68. 
Calculating ( i n  t h e  F i r s t  Approximation) 
t h e  F ie ld  Scat tered by t h e  Sphere. 

Pos i t ion  of t h e  Vectors when 

I 4.001 0,0871 7.20 -0,0288 i4,oo 
4.20 0,0481 1 7,404,0174 16.00 I 721 -0,0147 ! 7,801-0,0036 20.00 

0,0141 ' 7,60 -0.0064 18.00 

where J i s  t h e  Bessel funct ion of t h e  order  312. 
312 

W e  have computed a similar t a b l e  f o r  t h e  funct ion f ( q ) .  It i s  given i n  
W e  (Ref. 110) ( f o r  q from 0 t o  10 -- every 0.02; from 10 t o  40 -- every 1). 

s h a l l  present  p a r t  of t h i s  t a b l e  here .  

l,SO 
1,BO 
2.00 
2,20 
2,40 
2,60 
2,80 
3.00 

TABLE 26 

0,7663 
0,7111 
0,6531 
05924 
0.5306 
0,4682 
O A F  
0,3456 

-0.05iO 

'*@ -0.0799 
5.60 -0,0849 
5.80 -0,0861 
6.00 -0,0838 
6.20 -0.0781 

I 

0,0314 
0.0279 
0.02.35 - 0,01852 

-0.00 101. _,_ -. - 
0,01101 

-0,00650 
- 0,00259 

0,00620 
-0,0024 1 
- 0,00274 

O.O(x372 
-0,000624 
- 0.00239 

0,00224 
0,000232 

0.00129 
-a00197 

-- 

Figure 69 presents  a graph showing t h e  funct ion f (q ) .  The zeros of t h e  
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funct ion coincide with t h e  r o o t s  of t h e  t ranscendental  equation t g  x = x. 

For s m a l l  q,  w e  have: 

(8.17) 

For l a r g e  q ( i n  addi t ion  t o  t h e  v i c i n i t i e s  of t h e  po in t s  cos q = 0):  

(8.18) 

I f  q is very s m a l l ,  then €(q)  2 1, and formula (8.14) changes i n t o  t h e  
formula (4.5) -- t h e  f i e l d  of t h e  o s c i l l a t i n g  dipole .  

(c) S c a t t e r i n g  i n d i c a t r i x .  From formula (8.14) w e  f i n d  t h a t  t h e  scatter- 

ing  i n d i c a t r i x  d i f f e r s  from t h e  Rayleigh i n d i c a t r i x  only by t h e  f a c t o r  f (4). 
It i s  due t o  i n t e r f e r e n c e  of t h e  f i e l d s  which are s c a t t e r e d  by d i f f e r e n t  ele- 

2 

1237 ments of t h e  sphere. We have t h e  following f o r  l i n e a r l y  polar ized l i g h t :  - 
(8.19) 

Here 9 is  t h e  angle between t h e  d i r e c t i o n  E 
which i s  perpendicular t o  k. For n a t u r a l  l i g h t ,  w e  have 

and t h e  pro jec t ion  R 0 0 on t h e  plane 

(8.20) 

I n  order  t o  i l l u s t r a t e  t he  l a t te r  
formula, w e  have used i t  t o  c a l c u l a t e  
t h e  s c a t t e r i n g  i n d i c a t r i x e s  of four  
p a r t i c l e s  with p = 0.4; 0.8; 1 .6;  4. 
They are shown i n  Figure 70. 

I n  t h e  f i r s t  approximation, the 
form of t h e  i n d i c a t r i x e s  f o r  p a r t i c l e s  
with d i f f e r e n t  m w i l l  be  t h e  same. 

0 2 4- t h e  curves presented i n  Figure 70 repre- 
s e n t  t h e  i n d i c a t r i x e s  f o r  par t ic les  with 
a given p of any substances,  provided 

Thus, 

Figure 69. Graph Showing t h e  t h a t  01 is  s m a l l  enough. 
Function f (9).  

(d) Polar iza t ion .  Since the re  is 
no mutual inf luence of dipoles  i n  t h e  

approximation under considerat ion,  t h e  degree of s c a t t e r e d  l i g h t  po lar iza t ion  
w i l l  be  Rayleigh polar iza t ion .  

(e) S c a t t e r i n g  Coeff ic ient .  I n  order t o  c a l c u l a t e  t h e  s c a t t e r i n g  coef f i -  
c i e n t ,  w e  must i n t e g r a t e  t h e  s c a t t e r i n g  i n d i c a t r i x  over a l l  d i r ec t ions :  

1 7 4  



/238 Subs t i tu t ing  t h e  expression f o r  I from (8.19) o r  (8.20) -- i t  does not  - 
matter which one -- a f t e r  i n t e g r a t i o n  w e  obtain 

k"'= xa9( a 19~W((z) .  (8.21) 

Here w e  have 
Fcs (2) 1 - *:: {$ -(- 5z3+ (4z*- i6)(ci z- In t - c) - 

-!222tnt+ 14 (cost-  (8.22) 

Figure 7 0 .  I n d i c a t r i x e s  of Weakly Refracted Particles 
With p = 0.4;  0.8; 1.6 and 4 (scale of t h e  curves i s  equal) .  

where z = - - - 4 p ,  c is the  Euler constant equal t o  0.577 . . .; c i  z is t h e  

i n t e g r a l  cosine of z :  
x 

m 

dZ=- p+. 
S 

For s m a l l  z ( the  Rayleigh case ) ,  we have 

I Fc1)(t)=2xS(m-26 rc lQ-W), 

q) 1 Q,18324xa*[ a p. (8.23) 

For l a r g e  z ,  we have /239  
1 The s c a t t e r i n g  c o e f f i c i e n t  is proport ional  t o  - 
A4' 

(8.24) I n2 
2 

FC')(Z) = - 29 

R'p" 8 ~ 9 ~ '  I [L I'J * Z U ~ ,  

Comparing t h i s  formula wi th  formula ( 7 . 4 ) ,  w e  can r ead i ly  see t h a t  our 
formula d i f f e r s  by only a f a c t o r  of 2 from t h e  formula obtained by Jobst f o r  t h e  
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same l i m i t i n g  case from t h e  M i e  so lu t ion .  
Jobs t  e r r o r  which we  pointed out  above. 

This d i f fe rence  is caused by the  

0,oo 0,Ooo 
1,OO 0,153 
1.20 0,375 
1,40 0.651 
1.60 1,145 
1.80 1,757 
2,oo 2,665 
230 3,810 
2.4 , 5,290 
2,6 1 7.106 

I 

TABLE 27 

- 
z 
- 
2 8  
3,O 
3, I 
3.1 
3 2  
3,3 
3.4 
3,5 
3,6 
397 

-- 

I n  t h e  approximation unc 

F(')(z) 

9,277 
11,883 
13,363 
14,015 
14,920 
16,640 
18 456 
20,39 1 
22,463 
24,654 

3 8  I 
3,9 
4,0 ; 
4,5 
5,O 
5,9 
6 >O 
G,1 . 
6.2 I 

6,28; 
6.4 , 

26,944 
23,372 
3 1,938 
46,545 
64,093 

102,407 
106.927 
111,368 
1 16,224 
120,054 
125.956 

158,012 
217,111 
28.5,508 
365,570 
463,141 
57 1,881 
69 1,099 
818,506 
Y56. I47 

1794,589 

:r considerat ion,  t h e  s c a t t e r i n g  coef i c i e n t  in-  

creases i n d e f i n i t e l y  (%zL) with an increase  i n  z .  

W e  tabulated t h e  funct ion F(')(z). Table 27 presents  its values  f o r  z 
For l a r g e r  values  of z ,  w e  may employ t h e  asymptotic forniula from 0 t o  20. 

(8.24). 

Figure 71 (curve 1) presents  a graph of t h e  funct ion F ( l ) ( z )  

For purposes of comparison, t h e  graph a l s o  presents  t h e  Rayleigh dependence, 

i.e., t h e  funct ion 0.188 z4 (curve 3 ) .  

The decrease i n  t h e  rate a t  which F1(z) increases  with an increase  i n  t h e  

p a r t i c l e  s i z e  i s  caused physical ly  by t h e  mutual cancelat ion of t h e  f i e l d s  from 
d i f f e r e n t  p a r t s  of t h e  sphere,  which occurs due t o  t h e  phase d i f fe rence  between 
them. 

By employing t a b l e s  25 and 27, w e  can determine t h e  region of applica- /240 

b i l i t y  f o r  t h e  f i r s t  approximation. 
P 

f i n d  t h a t  t h e  f i r s t  approximation is appl icable  up t o  p % 5 f o r  a drop of water 

i n  t h e  air ,  and i s  appl icable  up t o  p % 5.5") f o r  a bubble of air  i n  w a t e r .  

If i t  is  assumed t h a t  k < 2aa2, w e  r e a d i l y  

( 4  I n  conclusion, /241 
l e t  us t u  n and t h e  

This i s  t h e  l i m i t  of a p p l i c a b i l i t y  of t h e  formulas f o r  k (p) and 
P 

n o t  f o r  I(~) (6). 
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2.00 
tf0 
tao 
170 

260 
t 50 
tcD 

110 
1, ?O 

1 IO 
iw 
495 
480 
070 
460 
450 
440 
Q30 
525 
4 '0 

ZJUI the  Kirchhoff theory,  w e  must i nves t i -  I J 4 5 p-- 
gate  the  l imi t ing  form of these  formulas 

Figure 71. Sca t te r ing  Coeff ic ien t  i n  the  case of l a rge  spheres.  
K(p) f o r  m = 133.  

1 -- i n  t he  f i r s t  approximation; 
2 -- exact  curve; 3 -- according ind ica ted  t h a t ,  as the  rad ius  of t he  
t o  Rayleigh. sphere increases ,  i t s  s c a t t e r i n g  indica-  

L e t  us begin with deformation of t he  
s c a t t e r i n g  ind ica t r ix .  W e  have already 

t r i x  extends f a r t h e r  and f a r t h e r  forward. 
This extension leads t o  the  f a c t  t h a t  

p r a c t i c a l l y  a l l  of t he  sca t t e red  energy is  only t ransmit ted forward i n  the  case 
of l a r g e  particles. Waves i n  the  lateral  d i r ec t ions  and i n  the  backward d i rec-  
t i o n  are damped, r e s u l t i n g  from mutual in te r fe rence .  The forward extension of 
t he  i n d i c a t r i x  must be i n  agreement with the  well-known r e s u l t  of d i f f r a c t i o n  
theory which proves the  r e c t i l i n d p r i t y  of l i g h t  propagation. 
theory,  t h i s  r e s u l t  i s  obtained b'y compiling the  Fresne l  zones [see the  end of 

I n  d i f f r a c t i o n  

§ 2 ,  Chapter V I I ] .  2 ,  

I; 
The devia t ion  of t he  i n d i c d t r i x  from a symmetrical form and its forward 

extension, as the  p a r t i c l e  s i z e  increases ,  is ca l l ed  the  Mie e f f e c t .  Thus, 
t h e  physical  essence of t he  M i e  e f f e c t  cons is t s  of t h e  f a c t  t h a t  t he  i n d i c a t r i x  
i s  deformed as the  par t ic le  s i z e  increases  so  as t o  produce the  r e c t i l i n e a r  
propapation of l i p h t ,  i n  the  case of an i n f i n i t e  medium.(l) 

These discussions p e r t a i n  t o  a sphere which is  assumed t o  be  cu t  out of 
a uniform medium -- i.e., t o  the  case a + 0 and P -+ m, so  t h a t  l a l p  -+ const (see 
the  end of § 3 ) .  
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Kirchhoff d i f f r a c t i o n  theory. 

A ca lcu la t ion  of t he  s c a t t e r e d  
f i e l d  may be  reduced, i n  the  f i r s t  appraxi- 
mation, t o  summation of t he  f i e l d s  i r r a d i -  
a ted  by d ipoles  which uniformly f i l l  a 
sphere. 
customary d i f f r a c t i o n  problem. The only 
d i f fe rence  cons i s t s  of the  f a c t  t h a t  
here  w e  have a volumetric "hole". Thus, 
s ince  the  i n t e n s i t y  of d ipole  e x c i t a t i o n  
i s  given by a plane wave, and the  obser- 
va t iona l  po in t  i s  located a t  the  d is tance  
r >> a, the  problem under considerat ion 
i s  s imilar  t o  the  d i f f r a c t i o n  problem i n  
p a r a l l e l  rays  i n  the  Kirchhoff approxi- 
mation [see (Ref. 2) ] .  

This problem i s  s i m i l a r  t o  t he  

It is w e l l  known t h a t  t h e  d i f f r a c t i o n  
theory developed by Kirchhoff i s  an 
approximation theory, taking i n t o  account 
terms of t he  f i r s t  order with respect  t o  
A/a (a -- dimensions of t he  body, the  
holes ,  e t c . ) .  Therefore, i n  order  t o  
e s t ab l i sh  the  r e l a t ionsh ip  between the  
formulas of the  f i r s t  approximation and 



L e t  us now examine t h e  expression f o r  t h e  s c a t t e r i n g  c o e f f i c i e n t  [formula /242 
( 8 . 2 1 ) ] .  W e  have already indica ted  t h a t ,  i n  t h e  case of l a r g e  p a r t i c l e s ,  our 
formula leads t o  a r e s u l t  which is paradoxical i s  physical  terms -- t h e  scatter- 
ing c o e f f i c i e n t  increases  i n  proportion t o  t h e  four th  power of t h e  r ad ius  (in- 
s t ead  of t h e  c o r r e c t  second power). 

This r e s u l t  apparently arises due t o  an inaccura te  ca l cu la t ion .  It may be 
explained by t h e  f a c t  t h a t  w e  have considered t h e  f i r s t  approximation which, as 
w e  have already indica ted  above (see § 4 ) ,  cannot he  applied t o  t h e  case a >> 1. 

I n  t h e  case - >> 1, i n  order  t o  obta in  t h e  c o r r e c t  r e s u l t  w e  must take i n t o  

account t h e  mutual r e l a t i o n s h i p  between t h e  r a d i a t i v e  dipoles .  

a 
x 

Formula ( 8 . 2 4 )  simply means t h a t  a system of non-interacting dipoles ,  which 
i k r  uniformly f i l l  a sphere and which are exci ted according t o  t h e  l a w  e 

d ipole  coordinates) ,  r a d i a t e s  energy i n t o  space i n  proportion t o  t h e  f o u r t h  
power of t h e  sphere radius .  

(r -- 

This f a c t  i s  r e l a t e d  t o  t h e  Kirchhoff theory.  I n  order t o  prove t h i s ,  w e  
should recall t h a t  t h e  i n t e n s i t y  of l i g h t  i n  t h e  cen te r  of a d i f f r a c t e d  spot  
during Fraunhofer d i f f r a c t i o n  from a c i r c u l a r  hole  i s  determined by t h e  formula 
(6.11): 

2 

is t h e  i n t e n s i t y  of i nc iden t  l i g h t .  where I = - 0 4n 
CEO 

Drawing an analogy between d i f f r a c t i o n  of l i g h t  i n  a drop and i t s  d i f f r a c t i o n  
when penetrat ing a c i r c u l a r  ho le  i n  an opaque screen, w e  should note  t h a t  -- i f  
t h e  occurrence of t h e  d i f f r a c t i o n  p i c t u r e  i n  t h e  second case depends on t h e  f a c t  
t h a t  E i n  t h e  hole  d i f f e r s  from zero -- t h e  occurrence of t h e  d i f f r a c t i o n  pic- 
t u r e  i n  t h e  f i r s t  case i s  caused by t h e  f a c t  t h a t  E = EE 
con t ra s t  t o  E i n  t h e  surrounding space. Therefore, i f  w e  w r i t e  I = 3 f o r  

d i f f r a c t i o n  i n  a hole,  w e  must write t h e  following here: 

i n  t h e  sphere,  i n  0 

O 4n 0 

Luminous i n t e n s i t y  i n  t h e  d i r e c t i o n  of t h e  wave vec tor  w i l l  be: / 2 4 3  

W e  may obta in  t h e  t o t a l  s c a t t e r e d  f l u x  i f  w e  mult iply I by t h e  s o l i d  
angle i n  which s c a t t e r i n g  occurs. A s  we have already noted, l i g h t  i s  pr imari ly  
s c a t t e r e d  i n  t h e  forward d i r e c t i o n  (more prec ise ly ,  i n  t h e  region of s c a t t e r i n g  

angles 0 5 f3 < - ), 2 
n 

- 

The s o l i d  angle corresponding t o  these s c a t t e r i n g  angles i s  2n.  W e  thus 
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have : 
IIc12zI; &==- n =zd]a]'zST, %' 

i.e., exactly the formula (8.24) indicated above. (1) 

10 

Thus, a sphere consisting of non-interacting dipoles transmits in all 
directions within the angle 27r as much light as the "volumetric" hole transmits 
in only the forward direction, on the average. This leads to the fact that the 

scattering coefficient in the first approximation differs from the value 2xa . 
We have already seen above (Chapters VI and VII) that the scattering coefficient 
for large spheres, no matter what the material they are made of may be, must 

z equal 2~ra . This indicates the region of those p inwhich (for a given 01) we 
may apply the method developed here (see the end of § 3 ) .  

2 

5 3 .  Second Approximation for a Sphere Whose Dimensions 
are Comparable with the Wavelength 

In this section, we shall perform calculations in the second approximation, 
i.e., we shall take into account terms which are proportional to 
field of the scattered wave. We thus confine ourselves to the case of a sphere 
whose dimensions will be comparable with the wavelength, i.e., p ; 1. 

in the 

(a) Effective Field within the sphere. In order to calculate the terms /244 

$ 1 0 1 1 ~  in the scattered field, we must take into account the terms $ l a ]  in the 
effective field. In the first approximation, the effective field within the 
sphere is determined from formula (8.5): 

(8.25) 

Here 

where p = ka, R = ]r - r'l (both points -- the observational point r and the 
source r' -- are located within the sphere). 

We can write the second expression f o r r i n  dimensionless coordinates. 
Integration may be performed over a sphere of unit radius. 

Expanding the exponential function in series or employing the series for 
plane and spherical waves,contained in the integral in r , we find [see 

Strictly speaking, we must introduce the factor 62n, where 0 B 5 1. 
However , systematic consideration of the hole 'tvolume" (in contrast tothe- 
customary case, each direction is the direction of the disk axis, although it 
is not parallel to k), which was done above, shows that B = 1. 
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(Ref. 110)l: 

I 

- 48 + 24 cos26 f35  cos4 6 
+r" 336 

( 8  26) 

16 + 60 ~ 0 ~ 2 %  + 315 
36% -4 

Let us now calculate the effective field. Let 1be the unit vector in I245  
the direction E In accordance with formula ( 8 . 2 5 ) ,  we have 0'  

In the quasistatic case -- i.e., in the case X >> a -- assuming that 
p = 0 and substituting yo in ( 8 . 2 7 )  a s 7  , we find that E(1) = 0 .  Thus, for 

very small spheres the effective field within the sphere exactly coincides with 
= 0 -- then Eeff = Eeff the external sphere, since -- 

fact holds only for the effective field, but not for the average field. 
physical meaning consists of the fact that, in the case of long waves, the 
field of screening charges on the surface exactly compensates for the field 
produced by polarized elements of the sphere volume. This compensation makes 
it easier to calculate the successive approximations for the effective field, 
rather than for the average field. In § 2, it caused us to cease studying the 
equation ( 8 . 1 )  and to study the solution of equation ( 8 . 3 )  (for the effective 
field) . 

eff 

... = 0. This ( 2 )  (3)  = 
if Eeff 

Its 

By means of the values for Ti which we calculated, by using formula 
Let i be the direction of the x-axis, 
Omitting the factor E 

eff * (8.27), we can readily determine E 

and k be the direction of the z-axis. 
accuracy of the terms %p2 ), we have 

(within an 0 

180 

(8 .28)  



The terms containing p 3  and p 4  can be written in a similar way. 

. In order to calculate E and E outside of the e 4 (b 1 
(1) sphere, we must first determine the vector A : 

We have changed to dimensionless coordinates here, and we have replaced R = 
= lr - r' I by r - d, where r is the distance from the observational point to 
the center of the sphere,d -- distance from the source (element of the sphere 
volume) up to the plane passing through the sphere center and perpendicular to 

the scattering direction. Calculating A"), we readily find Ee and E 
/246 

4 -  

(8.29) 

Here 

The constants contained here have the following values: 

0,502 . . . t1~,=%=3,351 . ..; pi=a=0,335 8% . . .; p l = - g =  4% 

A,=1,428 ...; A,=0,460 ...; A,=0,0153 ... 
a, 0,0749 . . . ; a; = 0,03223 . . . 

For the total scattering indicatrix (in the case of natural light scatter- 
ing), we obtain 

(8.30) 

Here I ( l ) ( B )  is the indicatrix of the first approximation of (8.20). 

We have thus omitted terms containing X 3, X 4 ,  

more than 2.5% of the terms containing X1 and h2 (and these latter terms are 

included in the correction -- the second approximation). 

since they comprise no 
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(d) Polar iza t ion .  W e  ob ta in  t h e  following f o r  t h e  degree of polar iza t ion  

H e r e  p i s  Rayleigh polar iza t ion .  

(8.31) 

I 2 4 7  - 
W e  should poin t  out t h a t  t h e  polar iza t ion  maximum i n  t h e  second approxima- 

a t  l a r g e r  scat- 
t i o n  occurs a t  B = 90°, and equals unity.  
than go", t h e  polar iza t ion  i s  less than Rayleigh polar iza t ion ;  
t e r i n g  angles,  i t  is l a r g e r  than t h e  Rayleigh polar iza t ion .  

A t  s c a t t e r i n g  angles which are less 

(e) Sca t te r ing  c o e f f i c i e n t .  I n  t h e  second approximation, w e  ob ta in  t h e  
following f o r  t h e  s c a t t e r i n g  c o e f f i c i e n t  

@ = x d  I a 1' 9') (z, a), (8.32) 

where 

F W  (z, a )  = F(* )  (2) 11 + 429, (1 - 7,22]; (z 3 I p ) .  

Here (z) i s  determined by t h e  formula (8.22), and t h e  constants  y 1 
= 0.4183 ...; y4 = 0.02190 ... . Y 1  and y4 have t h e  following values:  

water i n  t h e  a i r  (a = 0.048). 
A t a b l e  of P(2) (z, a) i s  given i n  (Ref. 110) (Table 4) f o r  a drop of 

( f )  Accuracy of t h e  s imple  formulas obtained. I n  order t o  determine t h e  
accuracy of t h e  formulas obtained, l e t  us compare t h e  computational r e s u l t s  
based upon these  formulas ( the  ca lcu la t ions  are very simple and s t ra ightforward)  
with t h e  c a l c u l a t i o n s  based on t h e  M i e  formulas. 

B l i i m e r  (Ref. 56) has tabulated t h e  i n d i c a t r i x  f o r  spheres of ice, assuming 
W e  have used our formulas t o  c a l c u l a t e  t h a t  m = 1.25 ,  which y i e l d s  ct = 0.0377. 

t h e  case p = 0.4 (case a )  and p = 0.8 (case b)  . 
The r e s u l t s  are compared i n  Table 28, where w e  present  t h e  value of i (B) .  

When compiling Table 28, w e  corrected t h e  d a t a  of B l i i m e r  f o r  t h e  numerical 
e r r o r  which they contained -- namely, w e  introduced t h e  f a c t o r  112 which w a s  
erroneously omitted by B l i i m e r  (see 111, 4). 

I n  t h e  second and f i f t h  columns of Table 28, we have presented t h e  d a t a  of 
B l i i m e r .  W e  have presented t h e  r e s u l t s  derived from our ca lcu la t ions  f o r  case 
(a) i n  t h e  f i r s t  approximation ( i ' )  and i n  t h e  second approximation ( i " ) ,  i n  
t h e  t h i r d  and four th  columns. W e  have presented t h e  same information f o r  case 
(b) i n  t h e  s i x t h  and seventh columns. 

I n  case (a), only two s i g n i f i c a n t  d i g i t s  are given by Bliimer f o r  t h e  
angles  > 20". 
a t  certain angles.  I n  order  t o  obta in  an accuracy of 1%, i n  case (a) Bliimer 

The t h i r d  d i g i t  ( 5 )  which w e  g ive  r e s u l t s  from dividing by two 
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had t o  take  i n t o  account four  p a r t i a l  o s c i l l a t i o n s  -- two elect 
and two magnetic o s c i l l a t i o n s ,  

on formula (8.30), which w a s  s impl i f ied  by the  f a c t  t h a t  w e  omitted the  terms 

'LP 
see t h a t  i n  case (a )  t h e  f i r s t  approximation provides an e r r o r  of no more than 
5%, whereas the  s impl i f ied  ca l cu la t ion  of the  second approximation leads t o  an 
e r r o r  of no more than 0.8%. 
of Bliimer is smaller than h i s  computational accuracy, t h e r e  is no poin t  i n  per- 
forming computations with g rea t e r  accuracy, and it  may be  assumed t h a t  t h i s  
agreement is q u i t e  good. 

o s c i l l a t i o n s  
Our ca lcu la t ions  f o r  t h i s  s a m e  case w e r e  based /248 

Comparing t h e  second and t h i r d  columns with the  f i r s t  column, w e  can 

Since the  divergence between our d a t a  and the  d a t a  

TABLE 28 

a - 
B - 
1 - 
0 

10 
20 
30 
60 
70 
80 
90 

100 
110 
120 
150 
160 
1 70 
180 

- 
103 iB, 

1 

0,107 
0,105 
0,100 
0,0925 
0,0645 
0,057 
0,05 15 
0,0495 
0.w 
0,054 
0,060 
0,082 
0,0875 
0,0915 
0.093 

it 

a 

0,102 
0,101 
0,096 
0,089 
0,062 
0,055 
0,050 
0,048 
0,049 
0,0525 
0,058 
0,080 
0,085 
0,089 
0.090 

103 iff 

4 

0,107 
0,105 
0,100 
0,0926 
0,0646 
0,057 
0.05 1 9 
0,0498 
0,050 
0,054 
0.060 
0,082 
0,0879 
0,091 7 
0,093 

lo2 iB, 

5 

0,746 
0.732 
0.692 
0,632 
0,41 I 
O,d52 
O , . W  
0,285 
0,nY 
0,287 
0 308 
0.390 
0,412 
0,426 
0,431 

b 

1P i' 

6 

0.654 
0,641 
0,607 
0.553 
0#760 
0,308 
0,272 
0352 
0,247 
0.256 
0,275 
0,349 
0,367 
0,380 
0,384 

-- 

101 in 

7 

0,733 
0,719 
0,680 
0,621 
0,404 
0.346 
0.305 
0282 
0 3 5  
0.285 
0,304 
0.388 
0,410 
0,424 
0,428 

- 
I n  case (b ) ,  t he  f i r s t  approximation y i e lds  values  which are sm-i ler  than 

The e r r o r  does not  exceed 12%,  and its r e l a t i v e  magnitude i s  those of Bliimer. 
almost constant .  I n  the  second approximation, t h e  deviat ions from the  B l i i m e r  
c a l c u l a t i o n s  do not  exceed 2%, and t h e  e r r o r  i s  a l s o  almost constant .  

W e  should point  out t h a t ,  i n  order  t o  obta in  the  r e q u i s i t e  accuracy, i n  /249 
t h i s  case Bl i imer  had t o  take  i n t o  account s i x  p a r t i a l  o s c i l l a t i o n s .  

The s i t u a t i o n  is the  s a m e  with the  formula f o r  the  degree of po la r i za t ion  
of s c a t t e r e d  l i g h t .  
mum e r r o r  which i t  y i e l d s  i n  case (d) w i l l  be about 3%. 

A comparison of the  numerical r e s u l t s  shows t h a t  t he  maxi- 

L e t  us now t u r n  t o  Figure 71, i n  which we have compared the  d a t a  ca lcu la ted  

I n  the  second approximation. 
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according t o  formula (8.21) f o r  t h e  s c a t t e r i n g  c o e f f i c i e n t  (1) wi th  t h e  curve 
of S t r a t t o n  and Houghton 
(3). 

k f o r  a drop of water i n  t h e  i n t e r v a l  0 < p < 5,  and even i n  t h e  very worst  
P 

i n t e r v a l ,  the relative e r r o r  does no t  exceed 20%. This curve q u a l i f i e s  more 
p r e c i s e l y  t h e  considerat ions presented a t  t h e  end of t h e  preceding sec t ion ,  
wi th  respec t  t o  t h e  region of a p p l i c a b i l i t y  of t h e  formula (8.21) f o r  k 

(2 ) ,  and with t h e  Rayleigh curve f o r  a drop of w a t e r  
i n  t h e  f i r s t  approximation represents  W e  can see t h a t  our formula f o r  k 

P 

(pz 5). P 
A comparison with t h e  Rayleigh curve shows t h a t  considerat ion of t h e  

i n t e r f e r e n c e  of t h e  d i p o l e  waves, which d is t inguishes  t h e  first approximation 
from t h e  simple Rayleigh formula, leads t o  a considerable expansion of t h e  
range of a p p l i c a b i l i t y  of t h e  formula f o r  t h e  s c a t t e r i n g  c o e f f i c i e n t  . 

4 
P 3 I n  t h e  second approximation, t h e  formula f o r  k y i e l d s  ( f o r  m = - ) agree- 

ment with t h e  accura te  values  up t o  p = l w i t h  an e r r o r  which does no t  exceed 2%. 

( f )  Concluding remarks. The formula (8.20) f o r  t h e  i n d i c a t r i x  i n  t h e  
f i r s t  approximation is  usual ly  c a l l e d  t h e  Rocard formula, although it w a s  f i r s t  
obtained by Rayleigh (Ref. 47). It w a s  derived next  by Gans (Ref. 112), and 
f i v e  years  la ter  ( t h e  t h i r d  t i m e )  by Rocard (Ref. 113). 

Rocard general ized t h i s  formula t o  polydisperse s o l  by introducing t h e  
following funct ion €or p a r t i c l e  d i s t r i b u t i o n  by s i z e :  

f (a)  = . 
H e  obtained t h e  following f o r  t h e  mean s c a t t e r i n g  i n d i c a t r i x :  

1250 3 
11 

Here i s  t h e  volume of a p a r t i c l e  having t h e  mean radius  a ( a = - ) - 

For l a r g e  p a r t i c l e s ,  t h e  monodisperse i n d i c a t r i x  has a sharply expressed 
i n t e r f e r e n c e  na ture  ( see  Figure 72, 1 ) .  After  averaging, t h e  curve smooths ou t ,  
and t h e  lobes disappear (Figure 72, 2). 

9iJ" I f  w e  requi re  an accuracy of 2 - 3% 
from t h e  formulas, t h e  region of appl i -  
c a b i l i t y  f o r  t h e  Rayleigh-Gans-Rocard 
formulas f o r  drops of water and bubbles 

with t h e  region of a p p l i c a b i l i t y  f o r  t he  
customary Rayleigh formula. 

-3.- -- 0" of air  i n  water p r a c t i c a l l y  coincide 

1 For p a r t i c l e s  with s m a l l  values  
of a, t h e  region of allowed p w i l l  be  

Figure 72. I n d i c a t r i x  of a Large, l a rge r .  It is connected with a by t h e  
Poorly Refracted P a r t i c l e .  
1 -- Monodisperse; 2 -- Average. 
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6 = 2apa 2 1 o r  -- replacing 2aa by (m - 1) -- w e  f i n d  6 = (m - 1) p 2 1. 

The quant i ty  6 has  a simple physical  meaning. 
of t h e  l i g h t  ray phases a f t e r  they have penetrated t h e  s c a t t e r i n g  p a r t i c l e  
(one-half of t h e  phase advance of t h e  c e n t r a l  ray) .  

It charac te r izes  t h e  change 

W e  have noted previously t h a t  t h e  smallness of a is i n s u f f i c i e n t  f o r  t h e  

This a l s o  follows from an ana lys i s  of t h e  
convergence of t h e  method appl ied here .  
provided by t h e  smallness of 6 .  
second approximation f o r  l a r g e  p. 
encountered, may be  ca lcu la ted  according t o  t h e  s t a t i o n a r y  phase method). 
would l i k e  t o  emphasize t h e  f a c t  t h a t  t h e  s i t u a t i o n  here  is similar t o  t h e  
s i t u a t i o n  w e  encountered when analyzing t h e  simple Rayleigh formula: 
of a p p l i c a b i l i t y  f o r  t h e  formula i s  not  determined by t h e  p a r t i c l e  dimensions, 
but  by t h e  per turba t ion  which i t  introduces i n  t h e  f i e l d  (p (m - 1)). 

The convergence of t h e  method w i l l  be  

(The q u a n t i t i e s  f and A, which are thus 
W e  1251 

t h e  region 

Customarily, t h e  i n t e n s i t y  of d i f f r a c t e d  l i g h t  f o r  l a r g e  p a r t i c l e s  i s  con- 

2 
s iderably  g r e a t e r  than t h e  i n t e n s i t y  of r e f l e c t e d  and re f rac ted  l i g h t  (by a 

f a c t o r  of p ) .  

one. 

(5.16) f o r  t ransmit ted l i g h t  ( t h i s  i s  t h e  main bundle here) .  I n  t h i s  case: 

I n  t h e  case 6 'L - 1 and p >> 1, they are both order  of magnitude 

2 This can be  r e a d i l y  seen i f  w e  set cos - =  1 and m + 1 i n  t h e  formulas 

I n  view of 6 n, 1, t h i s  means t h a t  t h e  f a c t o r  p 2  i s  included i n  t h e  inten-  
s i t y .  Since both bundles are order  of magnitude one, i t  is  impossible t o  separa te  
both bundles s p a t i a l l y ,  and t h e  s c a t t e r i n g  i n d i c a t r i x  may be e s s e n t i a l l y  deter-  
mined by t h e i r  i n t e r f e rence .  
d i s t r i b u t i o n  of type 1 i n  Figure 71. 

As a r e s u l t ,  w e  obtained t h e  p i c t u r e  f o r  i n t e n s i t y  

I n  conclusion, w e  would l i k e  t o  note  t h a t ,  i f  t h e  formulas of t h e  f i r s t  
approximation ( f o r  geophysical problems) are of l i t t l e  value,  t h e  formulas of 
t h e  second approximation are very useful .  I f  w e  r e t a i n  t h e  s impl ic i ty  inherent  
i n  t h e  customary Rayleigh formula, they may be  appl ied t o  p a r t i c l e s  which are 
3 - 4 t i m e s  l a r g e r  than those t o  which t h i s  formula is applied.  
e s s e n t i a l  advantage, and i n  t h i s  sense they must be  regarded as a genera l iza t ion  
of t h e  simple Rayleigh formula. 

This is t h e i r  

§ 4 .  Nonspherical P a r t i c l e s  

W e  have already indica ted  above t h a t  t h e  e s s e n t i a l  advantage of t h e  method 
which w e  have presented h e r e  f o r  so lv ing  t h e  problem of s c a t t e r i n g  is  i t s  adap- 
t a b i l i t y  t o  p a r t i c l e s  having an a r b i t r a r y  form. 
p a r t i c l e s  which are extended and contracted -- rods and disks  -- are of t h e  
g r e a t e s t  importance. These may be  ice prisms and lamellae, s m a l l  p a r t i c l e s  of 
smoke o r  dust .  

Af te r  spher ica l  p a r t i c l e s ,  

W e  would l i k e  t o  mention t h a t  t h e  problem w a s  inves t iga ted  previously by 
Gans (Ref. 114) f o r  i n f i n i t e l y  s m a l l  p a r t i c l e s .  S.V. Cherdyntsev (Ref. 115) /252 
made i n t e r e s t i n g  appl ica t ions  and important developments of t h e  Gans formulas 
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t o  problems en ta i l ed  i n  the  theory of hidden images. 

L e t  us i nves t iga t e  the  problem i n  t h e  f i r s t  approximation, and we  s h a l l  
approximate t h e  rod-like and d isk- l ike  p a r t i c l e s  by e l l i p s o i d s  of revolut ion,  
which are extended and contracted,  respec t ive ly .  

Figure 73.  Incidence of a Plane Bundle on an 
E l  l i p s  oid 

(a) The fie2d seaktered by  an exkended ellipsoid of  rotation. L e t  us 
assume t h a t  a monochromatic wave which is polar ized  l i n e a r l y  (Figure 7 3 )  f a l l s  
on an e l l i p s o i d  of revolu t ion  a t  an angle A from i t s  major ax is :  

E = ( k r - 4  

I n  accordance with § 2 ,  t he  f i e l d  sca t t e red  by an e l l i p s o i d  i n  a c e r t a i n  
d i r ec t ion  R may be determined by the  following formula 0 

ks 
Q 7 E o g  ( ~ 0 ,  A). 

Here w e  have 

p (R~, A) e J e - 8 @ r + w  dv’. (8 .33)  

The latter i n t e g r a l  i s  extended over the  e l l5psoid .  The equation f o r  t he  1253 
e l l i p s o i d  w i l l  be as follows i n  the  coordinate sys t emre la t ed  t o  t h e  axes 
of symmetry 

( 8 . 3 4 )  

L e t  a > b (a -- the  semimajor a x i s ) .  I n  t h i s  same coordinate  system, the  
wave vec tor  of an i n f i n i t e  wave k has  the  following components 

k~=kCosA;  kY=O; &,=&&A, 

‘l)Based on our study (Ref. 124) .  
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ox, Roy' Res' and t h e  vec tor  R has  the  components R 0 

L e t  us change t o  a new coordinate system. W e  s h a l l  select the  plane of 
t he  vec tors  k and Ro as the  coordinate  plane (x ' ,  z ' ) .  

s e c t  t h e  angle  be tweenk and Ro -- t h e  s c a t t e r i n g  angle 8 .  I n  t h e  new 

coordinate  system, the  vec tors  k and R 

L e t  t he  x'-axis bi-  

have the  following components 
0 

ROS. -COS-* B Rwt = 0; Roe, - - sin - B 2 '  2 '  
L e t  r be the  d is tance  from the  observa t iona l  po in t  t o  the  center  of the  

particle.  Noting t h a t  r >> a ,  w e  r ead i ly  f i n d  

W e  now have 

(8.35) 

The quant i ty  S(z;)) designates  t h e  area of an e l l ipse  which i s  produced by 

the  i n t e r s e c t i o n  of our e lLipsoid wi th  the  plane which is  perpendicular t o  t h e  
2'-axis a t  t he  poin t  with the  coordinate z ' *  z' 

t he  e l l i p s o i d  su r face  i n t e r s e c t s  t he  a x i s  z ' .  

transformation from the  new coordinate  t o  the  old coordinates:  

and z' -- poin ts  a t  which 0' min max 
L e t  ai be  t h e  matr ix  o f ,  

Y k  

' 
xd - QkXk. 

W e  may r ead i ly  determine i t s  components, i f  w e  compare the  value f o r  the  
components of the  vector  k or  Ro i n  the  old and new systems. 

It can be readi ly  seen t h a t  i n  1254 1, 3' From t h i s  po in t  on, w e  only need a 

the  case 6 # 0, we have 
COS A - RoS 

B *  Q1.a = 
2sin - 

2 
( 8 . 3 6 )  

W e  may w r i t e  the  equation f o r  t he  e l l i p s o i d  ( 8 . 3 4 )  i n  t he  following form 

&a - blxa = &a. 

Here 

azba P=x*+ya+zQ, an@ c2,- &-b'J 

I n  t h e  new coordinates ,  t he  e l l i p s o i d  equation w i l l  be 

(8.37) d o e a  +y'*ga + z'afa- 2rn.v'~'- 2nx'z' - 21y'z' = 1, 

where e,  g ,  f, m, n, R are the  constants  which may be readi ly  determined. For 
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examp le, w e  have 

Assuming i n  (8 .37 )  

we obta in  

x=y=o, 

* I #  1 Z,I, - - f 0 zmax=-f. 

Assuming z' = z; i n  t he  equation f o r  t he  e l l i p s o i d  ( 8 . 3 7 ) ,  w e  obta in  the  

equation f o r  an e l l i p s e  whose area S ( z o )  must be  determined. 

be 

This equation w i l l  

%'*e* +Y'~? - 2mx" - 2n.z;~' - 2 ~ ~ ; y '  + $p 1 == 0. 

After  simple t ransformations,  we obtain 

X s (6) = 1 [f" (egg2 - m2) - n (nga + me) - (e2p - rn?'I* 

- I (ear + mn)] 8; - (9g' - ms)) . 
Subs t i tu t ing  the  corresponding values of the  coe f f i c i en t s  e, g ,  f ,  m,  R 

and n ,  w e  r ead i ly  obta in  
s (4) = nM' [ 1 - L'di). 

Here w e  have 

The i n t e g r a l  (8.35) may be now read i ly  ca lcu la ted .  

Subs t i t u t ing  i t  i n  (8.33) and el iminat ing a l l  the  t i m e  no ta t ion ,  we  ob ta in  

4 Here v = 7 nab2 is t h e  volume of t he  e l l i p so id .  

where E is  the  e c c e n t r i c i t y  of t he  e l l i p s o i d ,  and 

(8 .38 )  

( 8  39)  

(8 .40 )  

I n  the  case E + 0, our f i e l d  changes i n t o  a f i e l d  which is sca t t e red  by a 
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sphere (8.14). For f i n i t e  E,  t h e  amplitude of t h e  s c a t t e r e d  f i e l d  depends not  
only on the  s c a t t e r i n g  angle  8, but  a l s o  on the o r i en ta t ion  of the e l l i p s o i d  
i n  space. depends on A:  

1, 3 
W e  should recall t h a t  01 

COS A - COS 7 
B '  2 sin - 2 

COS 1 - RW. 

% E  +3 

Here w e  have 

W e  would l i k e  t o  poin t  t h a t  f o r  given B and A t h e  angle  y cannot assume 
any values.  It may be r ead i ly  seen t h a t  we always have 

B- A 4 . l  <a+ A. 
This coincides  with t h e  f a c t  t h a t  al, ~ < 1. 

L e t  us i n v e s t i g a t e  t h e  l imi t ing  form of formulas (8 .38)  and (8.39) i n  t he  
case of particles which are almost sphe r i ca l ,  i .e.,  assuming t h a t  E << 1. 

1256 Retaining the  t e r m s  '2, i n  F, w e  have the following i n  t h i s  case - 
3 P - 7 (sin q - g cos 4). 

Outwardly, t he  formula coincides  with the  corresponding formula f o r  t h e  
sphere. However, q depends not  only on 13, but  a l s o  on A .  

Namely, w e  have 

4 = Qo (1 + w, 
where 

Here a* i s  t h e  rad ius  of the equivalent  sphere . l  

Taking i n t o  account ( 8 . 4 0 ) ,  w e  have the  following f o r  F 

where 

(8.41) 

(8.42) 

L e t  us now examine another l imi t ing  case of our formulas (8.39) and (8.40) --- 
t he  case of a g rea t ly  extended rod. 

L e t  t he  major a x i s  of our e l l i p s o i d  be m t i m e s  g rea t e r  than t h e  minor axis. 

A sphere with a volume which equals  t he  volume of the  e l l i p s o i d  under 
considerat ion.  
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W e  may r e a d i l y  assume t h a t  i n  t h e  case m >> 1 w e  have 

(8 .43 )  

which i s  n o t  c l o s e  t o  zero o r  one, and f o r  g which equals  zero,  w e  1, 3 
For c1 

obta in  

1257 I n  order t o  i l l u s t r a t e  t h e  formulas which w e  have der ived,  w e  have - 
ca lcu la ted  t h e  s c a t t e r i n g  i n d i c a t r i x  f o r  an e l l i p s o i d  i n  which t h e  major a x i s  
i s  t e n  times g r e a t e r  than the minor axis, and *W* = 1. 

t h e  major axis. I n  t h i s  case we  have 

The l i g h t  f a l l s  along 
h 

The dependence of t h e  i n t e n s i t y  of l i g h t  s c a t t e r e d  a t  t h e  angle  f3 on t h e  
quant i ty  f3 is  shown i n  Figure 74 a. 
scatters l i g h t  forward. 

We may see t h a t  our e l l i p s o i d  pr imari ly  

Figure 74  b shows t h e  i n d i c a t r i x  
of t h e  s a m e  e l l i p s o i d  i n  t h e  plane 
passing through t h e  major axis of t h e  
e l l i p s o i d ,  and t h e  inc ident  ray,  when 
l i g h t  f a l l s  across  t h e  ax i s .  I n  t h i s  

a case, w e  have 
fJ 2 a l . ~ = c o s T  and q=- 

Figure 74.  I n d i c a t r i x e s  of Non- Piti‘ 
Spherical  P a r t i c l e s .  

(There i s  no axis of symmetry here ,  and 
therefore  w e  must consider t h e  plane i n  
which t h e  i n d i c a t r i x  i s  ca l cu la t ed . )  

I n  t h e  f i r s t  approximation which is considered h e r e ,  p o l a r i z a t i o n  of 
This is v a l i d  f o r  s c a t t e r e d  l i g h t  i s  determined by t h e  Rayleigh formula. 

p a r t i c l e s  having an a r i b t r a r y  form. 

(b) Case of  a small, extended par t ic le .  Let  us  make a d e t a i l e d  invest iga-  
t i o n  of a s m a l l  p a r t i c l e ,  i .e . ,  t h e  case where 

I n  t h i s  case, w e  have 
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Thus, t he  dependence on the  s c a t t e r i n g  angle is only given here  i n  terms I258 

Of "I, 3' 

L e t  us i l l u s t r a t e  t h i s  case by means of an example. L e t  us set E = 9.9, 
which corresponds t o  a p a r t i c l e  i n  which the  long ax i s  i s  2.3 t i m e s  l a r g e r  than 
the  s h o r t  ax i s .  L e t  t h e  l i g h t  f a l l  along the  long axis (A = 0). I n  t h i s  case, 
the  s c a t t e r i n g  i n d i c a t r i x  of n a t u r a l  l i g h t  w i l l  have an a x i s  of symmetry. This 
i s  the  ax i s  of t he  e l l i p s o i d .  Thus, a1 = s i n  & . The s c a t t e r i n g  i n d i c a t r i x  

is shown i n  Figure 75 (curve 2) .  
2 

For purposes of comparison, t he  
same f i g u r e  gives  the  Rayleigh i n d i c a t r i x  
(curve I). W e  can see t h a t  t he re  is a 
c e r t a i n  d i f f e rence  only f o r  B which are 

-c c lose  t o  90°. The s t a b i l i t y  of t he  
Rayleigh s c a t t e r i n g  i n d i c a t r i x  toward - 0' - changes i n  t h e  form of the  s c a t t e r i n g  
p a r t i c l e  i s  a very important f a c t .  I n  
the  case of cont rac t ions  by a f a c t o r  of 
2-3, the  s c a t t e r i n g  i n d i c a t r i x  of a 

8" 

- 
-c 

Figure 75. 
Ind ica t r ix .  

"S tab i l i t y"  of t he  Rayleigh s m a l l  p a r t i c l e  bare ly  changes. 

I f  t h e  l i g h t  i s  obl ique t o  the  a x i s ,  
t he  i n d i c a t r i x  w i l l  no t  have an a x i s  of 

symmetry. L e t  us s e l e c t  the  vector  k as the  polar  a x i s ,  and we  s h a l l  d i r e c t  
the e l l i p s o i d  ax i s  along the  x-axis. It may be r ead i ly  seen t h a t  

(8 .46 )  

where 0 
I n  the  case 0 = 0 -- i . e , ,  i f  R l i e s  i n  the  plane (x, K) -- t he  i n d i c a t r i x  

exac t ly  coincides with t h a t  inves t iga ted  previously.  

i s  the angle  formed by the  planes (x, k) and (Ro, k) -- ( longi tude) .  

0 

It is thus found t h a t  i n  t h i s  plane the  e l l i p s o i d  of r o t a t i o n  by 90" does 1259. 
no t  change t h e  i n t e n s i t y  d i s t r i b u t i o n .  
planes.  
formula (8 .451,  with allowance f o r  the values f o r  a 

considerat ion [determined according t o  formula (8.4611. 

This w i l l  no t  be the  case i n  o ther  

i n  the  plane under 
The corresponding i n d i c a t r i x  may be  r ead i ly  ca lcu la ted  according t o  

1, 3 

I f  w e  cont rac t  our e l l i p s o i d ,  i t s  i n d i c a t r i x  w i l l  a l s o  be extended, and 
f o r  g r e a t l y  extended p a r t i c l e s  i t  w i l l  d i f f e r  considerably from t h e  Rayleigh 
i n d i c a t r i x .  

Curve 3 i n  Figure 75 corresponds t o  the  case when the  major axis is  10 
t i m e s  longer than t h e  minor axis, and A = 0. 
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(c) The "auerage *' indicatrix for different orientations. I n  the  atmosphere , 
w e  are deal ing wi th  a s c a t t e r i n g  i n d i c a t r i x  which is  averaged over a l a r g e  
number of particles which have random d i s t r ibu t ion .  

L e t  t he  dimensions and form of our p a r t i c l e s  be absolu te ly  the  same. W e  
s h a l l  a l s o  assume t h a t  t h e  d i s t r i b u t i o n  of t he  p a r t i c l e s  i n  space i s  absolutely 
random. 
averaged i n d i c a t r i x  t o  a sphe r i ca l  p a r t i c a l  having a c e r t a i n  rad ius ,  and what 
must t h i s  rad ius  be. 

The following important problem then arises: can w e  a t t r i b u t e  such an 

I n  order  t o  so lve  t h i s  problem, w e  must average t h e  i n d i c a t r i x  over a l l  
poss ib le  o r i en ta t ions  of t he  e l l i p s o i d  i n  space,  assuming t h a t  t h e  d i r e c t i o n  of 
t he  i n i t i a l  bundle and the  s c a t t e r i n g  d i r ec t ion  are f ixed.  

L e t  us examine the  case of a p a r t i c l e  which is  almost spher ica l .  

I n  accordance with (8;42), w e  f i n d  t h a t  f o r  E << 1, the  s c a t t e r i n g  i n d i c a t r i x  
w i l l  be 

11 & ( I  + 2 Sye'), 

where Io is  the s c a t t e r i n g  i n d i c a t r i x  of t he  sphere.  

L e t  us assume t h a t  our e l l i p s o i d  occupies a r b i t r a r y  pos i t i ons  i n  space, 
i .e.,  t h e  apex of i t s  major ax i s  i s  uniformly displaced over t he  sphere. 
k and R d i r ec t ions  are f ixed.  Therefore,  the  d i r e c t i o n  O Z ' ,  ly ing  i n  the  plane 

of t he  vec tors  k and R and perpendicular t o  the b i s s e c t r i x  of t h e  angle between 

them, w i l l  also be  f ixed.  W e  s h a l l  choose i t  as t h e  polar  ax i s .  I n  t h i s  case,  

Our 

0 

0 

= cos 8, where 8 is  t h e  angle between the e l l i p s o i d  ax i s  and OZ' .  
1, 3 

a 

Consequently , - 
s = Oan@ = go, F = F,. 

Thus, f o r  s m a l l  E, t h e  e l l i p s o i d  i n d i c a t r i x ,  averaged over its d i f f e r e n t  
s p a t i a l  o r i en ta t ions ,  coincides  wi th  t h e  i n d i c a t r i x  of a sphere having t h e  s a m e  
volume. 1 

L e t  us now study the  averaged i n d i c a t r i x  f o r  s m a l l  part icles,  but  with any 
E. I n  accordance with (8.45), w e  must average t h e  expression 

4 ("Within an accuracy of terms % E . 
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Just as previously,  s e l e c t i n g  the 02'-axis as the polar  axis, w e  r ead i ly  
f ind  t h a t  

This i n t e g r a l  may be  r ead i ly  ca lcu la ted  

where 

(8 .47)  

Thus, f o r  a s m a l l  rod-like p a r t i c l e ,  the  i n d i c a t r i x  averaged over its f 261 
d i f f e r e n t  o r i en ta t ions  coincides with the  i n d i c a t r i x  of a sphere whose volume 
is 

v+ - 1 / 3 0 ,  (8 .48)  

where v i s  t h e  volume of the  p a r t i c l e .  I n  t h e  case A +- 0,  i n  accordance with 
the  r e s u l t  obtained previously f o r  p a r t i c l e s  with s m a l l  E,  (p -+ 1. 

2 4 E 8 IOm 

Figure 76.  Graph of (p(m). 

TABLE 29 - _. . _ _  
I 1 J m  
1- - 
I - 1  

0 ' 1 . 0  

' 5 ' 2.62 
8 I 3,14 1 12 I 3,73 

iti I 424 
I 20 i 4.68 ' 30 5.66 
: 40 I 6.48 

- . - . . . . __ 
The formula f o r  + ( A )  i s  very cumbersome. W e  have compiled a t a b l e  of + ( A )  ' 

(Table 29). 
major axis and i t s  minor axis: 

L e t  us introduce t h e  quant i ty  m -- t h e  r a t i o  between t h e  e l l i p s o i d  

r --- ml,a- * A + J  t tfx 
b - 2 - 

Figure 76 shows t h e  dependence of t h e  e f f e c t  under considerat ion on m. 
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(d) Scattering of disk-Zike partictes. L e t  us now study the  s c a t t e r i n g  
of l i g h t  by very ob la t e  p a r t i c l e s ,  such as t a b l e t s .  

W e  shall approximately represent  such p a r t i c l e s  as e l l i p s o i d s  of revolu t ion  
whose t ransverse  a x i s  i s  g r e a t e r  than the  a x i s  of ro t a t ion .  
i n  s ec t ion  (a) are f u l l y  appl icable .  
t h e  e c c e n t r i c i t y  of t h e  t a b l e t  E* i n  t h e  f i n a l  formulas (8.39) and (8.401, 
ins tead  of t he  E introduced previously.  

The ca l cu la t ions  
We now have a < b ,  and we  must int roduce 

W e  may determine t h e  e c c e n t r i c i t y  E* /262 
according t o  the  formula 

V--0, 
I*' P - 

Y ' 
The quant i ty  E may be  expressed by means of E*: 

Consequently, w e  have 

and 

(8.49) 

(8.50) 

, j u s t  as previously,  depende on A ,  where A is the  angle  between the  Here c1 

d i r e c t i o n  of t he  primary bundle and t h e  ax i s  of symmetry a. 
t he  ez l ip so id  i s  again contained i n  q -- t h i s  t i m e  t h i s  i s  the  a x i s  of symmetry 
a. 
E*. 

1, 3 
The minor a x i s  of 

The quant i ty  F may be determined by the  same formula, i f  E is replaced by 

For the  case of p a r t i c l e s  which are almost s p h e r i c a l  -- i.e., f o r  E* << 1 -- 
w e  obta in  the  s a m e  formulas (8.41) and (8.42) as previously,  The quant i ty  S 
which i s  contained i n  t h e  formula (8.42) must now be replaced by t h e  quant i t )  S*: 

i .e.,  S = - S * .  The quant i ty  qo may be determined as follows: 

For very ob ia t e  p a r t i c l e s ,  assuming t h a t  m = >> 1, w e  f ind  t h a t  F may a 
be expressed by t h e  same formula (8.43), bu t  

I n  order  t o  i l l u s t r a t e  t h e  formulas derived here ,  let  us inves t iga t e  the  
s c a t t e r i n g  i n d i c a t r i x  of l i g h t  f o r  a p a r t i c l e  whose t ransverse  axis is 10 t i m e s  
g rea t e r  than the  a x i s  of symmetry (m = 10). 

L e t  us set /263 
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and l e t  the  l i g h t  f a l l  along the axis of symmetry. 

I n  t h i s  case, we  have 

and 

B q . 8  = sin - 2 

Figure 74 b presents  t h e  graphs of t he  ind ica t r ix .  

I f  l i g h t  now f a l l s  across  the  axis of symmetry on t h e  same p a r t i c l e ,  w e  
have t h e  following f o r  t h e  d i r ec t ions  ly ing  i n  the  plane of t h e  inc ident  ray 
and t h e  ax i s  of symmetry 

A graph of t h i s  i n d i c a t r i x  i s  presented i n  Figure 74 a. 

We can see t h a t  a g r e a t l y  contracted p a r t i c l e  has  a behavior which is j u s t  
t he  opposi te  of t h a t  f o r  a g rea t ly  extended rod (Figure 74 b corresponds t o  a 
s c a t t e r i n g  i n d i c a t r i x  of l i g h t  oblique t o  the  a x i s  of symmetry, and Figure 74 a 
corresponds t o  l i g h t  f a l l i n g  along i t ) .  W e  should poin t  out t h a t  t h i s  contra- 
d i c t i o n s  occurs f o r  very l a r g e  p a r t i c l e s .  S m a l l  o b l a t e  p a r t i c l e s ,  i.e., those 
f o r  which 

s c a t t e r  i n  exac t ly  t h e  same way as s m a l l  extended rods.  Formula (8.45) and 
a l s o  a l l  t he  s ta tements  i n  (b) are f u l l y  appl icable  t o  them. 

Everything t h a t  w a s  s t a t e d  i n  (c) regarding the  average i n d i c a t r i x  of rods 
having a random d i s t r i b u t i o n  a l s o  holds when averaging o b l a t e  particles having 
a random d i s t r i b u t i o n .  For s m a l l  e c c e n t r i c i t i e s ,  t h e  averaged i n d i c a t r i x  of a 
s l i g h t l y  o b l a t e  p a r t i c l e  coincides with the  i n d i c a t r i x  f o r  a sphere having the  
same volume. 

The averaged i n d i c a t r i x  of a s m a l l ,  bu t  a r b i t r a r i l y  obla te ,  p a r t i c l e  
coincides  with t h e  i n d i c a t r i x  of a sphere whose volume is 
than the  p a r t i c l e  volume. 

t i m e s  g rea t e r  

F. P. Polatbekov (Ref. 116) recent ly  made an experimental i nves t iga t ion  /264 
of l i g h t  s c a t t e r i n g  by p a r t i c l e s  having a non-spherical form (hydrosols of 
c lay) .  
ably l a r g e r  than the  Rayleigh s i z e .  
and curves i n  h i s  work. 

The p a r t i c l e s  which he examined had an e f f e c t i v e  s i z e  which w a s  consider- 
The reader  may f ind  the  numerical d a t a  
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§ 5. Sca t t e r ing  Coherence 

When studying l i g h t  which is s c a t t e r e d  by a t ransparent  co l lo id  system, 
one usua l ly  assumes that the  i n t e n s i t y  of l i g h t  observed at a c e r t a i n  poin t  I 
is t h e  sum of t h e  i n t e n s i t i e s  produced he re  by each element of t u r b i d i t y  i n  the  
i l luminated volume (I .) : 

J 
I=;Efj .  

f 

I f  the  d i s t ance  t o  the  observat ional  po in t  i s  considerably g r e a t e r  than 
the  l i n e a r  dimensions of t h e  i l luminated volume, t h i s  sum changes simply i n t o  
N I O ,  where N is the number of p a r t i c l e s ,  and Io is the  i n t e n s i t y  s c a t t e r e d  i n  a 

given d i r e c t i o n  by one p a r t i c l e .  It is apparent t h a t ,  i f  t h e  mean d is tances  R 
between the  p a r t i c l e s  are s m a l l  as compared with the  length of t he  s c a t t e r e d  
wave A ,  t he  in t e r f e rence  of l i g h t  s c a t t e r e d  by ind iv idua l  p a r t i c l e s  can be of 
g r e a t  importance. The in t e r f e rence  p a r t  i n  t he  sca t t e red  bundle, f o r  s u f f i c i e n t l y  
s m a l l  & / A ,  can even be considerably g rea t e r  than t h e  non-interference p a r t .  

Considerable d i f f i c u l t i e s  are en ta i l ed  i n  a genera l  examination of t he  
problem. 
(Ref. 1) has advanced the  p r inc ipa l  concepts per ta in ing  t o  the  circle of problems 
under considerat ion.  
considerat ion of t h e  " p l u r a l i t j ' o f  s c a t t e r i n g  makes up the  t o t a l  content  of t h e  
o p t i c s  of t u rb id  media i n  general .  
i n  p r a c t i c e  w e  have only had t o  search f o r  cor rec t ions  i n  t h e  case of l a rge  R/h 
(see 1 . 3 ) .  
This i s  the  case of t ransparent  systems. 

A s  w e  have already noted i n  the  in t roduct ion ,  L. I. Mandel'shtam 

Together with t h e  problem of elementary s c a t t e r i n g ,  

Fortunately,  i n  t h e  cases which are 5-mportant 

I n  one case, however, it w a s  poss ib le  t o  study any r a t i o s  of R f A .  

The problem of t h i s  s ec t ion  (Ref. 128) i s  t o  inves t iga t e  t h e  coherence 
during s c a t t e r i n g  by a transparent system, employing the  approximation method 
developed i n  § 1. 
approximation; w e  s h a l l  thus assume t h a t  t he  f i e l d  wi th in  the  system coincides  
with t h e  ex te rna l  f i e l d s .  
condi t ions under which non-coherent o r  coherent s c a t t e r i n g  w i l l  p r eva i l .  

I n  t ransparent  systems, w e  can confine ourselves  t o  the  f i r s t  

L e t  us de r ive  the  i n e q u a l i t i e s  determining the  / 2 6 5  

The t o t a l  electromagnetic f i e l d  produced by a l l  t he  p a r t i c l e s  a t  t h e  
observat ional  po in t ,  which i s  loca ted  r a t h e r  f a r  from the  volume being i l luminated,  
w i l l  be 

Here E is t h e  f i e l d  produced by a p a r t i c l e  located a t  t h e  o r i g i n  of t h e  0 coordinate  system; kKo -- t he  wave vec tor  of t h e  inc ident  r ad ia t ion ;  r 
rad ius  vec tor  of t h e  jth p a r t i c l e ,  ; R 
point .  

-- t h e  - 
j -- u n i t  vec tor  d i r ec t ed  t o  the  observa t iona l  0 

W e  thus obta in  t h e  following f o r  t he  i n t e n s i t y :  

I =  f, E c'rno-%. r j - v .  
A I 
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Separating t h e  terms with j = R i n  t h i s  double sum, w e  have 

(8.51) 

The double sum wi th  J # R i s  a q u a n t i t a t i v e  measure of t he  in t e r f e rence  
p a r t  i n  t he  s c a t t e r e d  bundle. 
due t o  the  f a c t  t h a t  t he  p a r t i c l e s  have a completely random d i s t r i b u t i o n  i n  the  
volume. However, i f  t he  c l o s e s t  neighbors of t h e  given particle are located a t  
d is tances  which are considerably less than A ,  t h e  phases of t he  waves emitted 
by several p a r t i c l e s  w i l l  d i f f e r  very l i t t l e  from each o ther .  
be reduced t o  summing t h e  emissions of t h e  volume elements of a quasi-sol id  
body, along which the  phases of t he  emitted waves w i l l  change uniformly. 
Consequently, t he  sum of the  corresponding expressions i n  (8.51) w i l l  no t  equal  
zero. 

It is  usua l ly  assumed t h a t  t h e  sum equals zero,  

The problem may 

The t o t a l  i n t e n s i t y ,  which can be recorded by an instrument,  is  the  r e s u l t  
of averaging the  expression (8.51) over a l l  poss ib l e  arrangements of t he  p a r t i c l e s  
i n  the  system. 

Since the  mean value of a term i n  the  sum i s  the  same f o r  d i f f e r e n t  p a i r s  
of ( j  , R) , w e  have 

j-5 

Designating t h e  mean exponent ia l  term by +, w e  r ead i ly  f ind  t h a t  1266 - 
(8.52) 

Here v i s  the  e n t i r e  volume t o  be i l luminated,  and v’ is t h i s  same volume from 
which a sphere having the  rad ius  2a i s  cu t  out (a -- rad ius  of t he  p a r t i c l e s ) .  
This sphere lies around the  center  of t he  jth p a r t i c l e ,  within which t h e  center  
of t h e  
a l s o  assumed t h a t  a l l  pos i t i ons  of t h e  two p a r t i c l e s  wi th in  a given volume are 
equal ly  probable,  and t h a t  t h e  p robab i l i t y  f o r  t h e  jth p a r t i c l e  t o  be located 
i n  an element of the  volume dv 

a t  the  same t i m e ,  is simply 

!@ p a r t i c l e  cannot pene t ra te .  When wr i t i ng  formula (8.52), w e  

and f o r  a E.@ p a r t i c l e  t o  be loca ted  a t  dvR 
j’ 

dVl dvl -.- 
v v -  

W e  s h a l l  assume t h a t  t he  volume occupied by the  p a r t i c l e s  has t h e  form of 
a sphere with the  rad ius  R. 
i n  t h e  form of the  d i f f e rence  of t he  two i n t e g r a l s .  I n  t h i s  f i r s t  case, 
in t eg ra t ion  is performed twice over the  e n t i r e  volume v, and i n  the  second case, 
inner  i n t eg ra t ion  i s  extended over t h e  sphere having the  radius  2a. 
i n t e g r a t i o n  is  extended over the  volume v. 
(see V I I I ,  1) : 

W e  s h a l l  represent  t h e  double i n t e g r a l  i n  (8.52) 

Outer 
W e  now read i ly  obta in  the  following 

+ = P  (Q) - 8 $t(Q’). (8.53) 

H e r e  
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where $ = (ko, Ro) is  the  s c a t t e r i n g  angle,  and vo is the  volume of the  p a r t i c l e :  

For the  sca t t e red  i n t e n s i t y ,  w e  now obta in  

(8 .54)  

This formula provides a so lu t ion  of t he  problem which w e  formulated 
regarding the  de r iva t ion  of a r e l a t ionsh ip  descr ibing both types of s c a t t e r i n g .  
The f i r s t  component i n  the  parentheses (uni ty)  corresponds t o  non-coherent 
s c a t t e r i n g ,  and the  second component corresponds t o  coherent s ca t t e r ing .  

1267 Formula (8 .54 )  p e r t a i n s  t o  the  case of t ransparent  systems. - 
I n  order  t o  analyze formula ( 8 . 5 4 ) ,  w e  shou le  note  t h a t  f (x) + 1 i n  the  

case x -+ 0. Since w e  have A > R ,  and R i s  always g rea t e r  than a, t h i s  means 
t h a t  q' << 1 and f (4 ')  = 1. 

NVO 
L e t  us s e t -  = 6. This i s  t h e  r e l a t i v e  po r t ion  of t he  volume occupied 

V 

by the  substance.  W e  now ob ta in  

(8 .55 )  

W e  should note  t h a t  usua l ly  6 << 1. I n  t h i s  case, w e  ob ta in  

'==Nfo(l +ww]. (8 .56 )  

L e t  us study the  formula (8 .56 )  i n  g r e a t e r  d e t a i l .  

L e t  us f i r s t  t u r n  t o  t h e  case f3 = 0,  i .e.,  t o  s c a t t e r i n g  i n  the  forward 
d i r ec t ion .  For 6 = 0, q = 0 and f ( q )  = 1. Here 

1 = N l * ( l + N ] .  

I = Ngl,. 
Since N >> 1 always holds ,  then 

(8 .57 )  

I n  the  forward d i r e c t i o n ,  t he  phases of t h e  f i e l d s  f o r  a l l  p a r t i c l e s  are the  
same,and t h e  t o t a l  s ca t t e r ed  f i e l d  has a f a c t o r  N and the  i n t e n s i t y  has thefactarN2. 
The combination of t h e  f i e l d s  i n  the  forward d i r e c t i o n  causes t h e  M i e  e f f e c t .  
W e  can see t h a t  s t rong  forward s c a t t e r i n g  occurs not  only f o r  a s o l i d  body, 
bu t  a l s o  f o r  a system of p a r t i c l e s .  

L e t  us now study the  case $ # 0. 

W e  should note  t h a t  customarily R >> A ,  i.e., q >> 1. W e  thus have 
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For l a r g e  q ,  r e l a t i v e l y  i n s i g n i f i c a n t  changes i n  q lead  t o  g rea t  changes i n  
cos2 q. 
r e s u l t  of averaging cos2 p over r e l a t i v e l y  s m a l l  changes i n  q. 
then f2(q)  % 9 . 

Therefore , t h e  values  observed experimentally ac tua l ly  represent  t he  

L e t  us designate  the  component i n  (8.56) by 11: 
Since q = 1 2’ 

7i - Nfg (Q). 2q4 

Assuming t h a t  s i n  

order:  

N- 1, w e  r ead i ly  f ind  t h a t  the quan t i ty  TI has the  followdng /268 2 

(8.58) A4 q=00,75 * lo-”--, 
RP 

The numerical va lue  of 0 ,  which may be determined by the  s p e c i f i c  experi-  
mental condi t ions,  y i e lds  the  r a t i o  of the coherent p a r t  of the  s c a t t e r e d  
i n t e n s i t y  t o  the  non-cohegent p a r t  of t h e  sca t t e red  i n t e n s i t y .  

then rl <<1. Here I = N I  is non-coherent s ca t t e r ing .  I f  11 N- 1, w e  must 

r e t a i n  both terms i n  formula (8.56). I f  & >>l, (q >> l), the  s c a t t e r i n g  w i l l  

be coherent,  and i t s  i n t e n s i t y  may be  determined by the  formula 

I f  & 
R 

1, 

0 

R 

(8.59) 

Another form may be a t t r i b u t e d  t o  the  l a t te r  formula. I n  the  case which 
w e  are considering, due t o  R > a,  X > R ,  w e  can always apply the  Rayleigh 
formula f o r  s c a t t e r i n g  by an ind iv idua l  rod, s i n c e  he re  X >>a. We thus have 

Here m i s  the  relative (complex) index of r e f r a c t i o n  of a suspended rod. Sub- 
s t i t u t i n g  I i n  (8.59), and not ing t h a t  0 

N mr-1 - 
( m T 2 )  - P ET a 

i s  t h e  d ipole  moment of a u n i t  volume of t he  suspended particles,  w e  readi ly  
obtain 

(8 .60)  

This formula coincides with t h e  formula f o r  i n t e n s i t y  which w e  obtained 

can be simply regarded as s c a t t e r i n g  from a s o l i d ,  macroscopic body, 
previously 
system 
whose d i e l e c t r i c  constant  is determined by the  suspended particles.  
are consider ing t h e  case of t ransparent  systems, t he  formula which w e  obtained 
f o r  i n t e n s i t y  coincides  wi th  t h e  formula f o r  i n t e n s i t y  during l i g h t  s c a t t e r i n g ,  /269- 
which w a s  obtained i n  § 2.1 

(8.20). This means t h a t  s c a t t e r i n g  of waves with X >>E from a 

Since w e  

(‘)If we  wish t o  consider t h e  inf luence  of t he  bas i c  substance,  we must 
s u b s t i t u t e  (1.11 + p2) i n  (8.60),  ins tead  of 1.1, where 1.11 per t a ins  t o  suspended 
p a r t i c l e s ,  and p2 pe r t a ins  t o  t h e  bas i c  substance. 
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The quantity rl is small in the case of scattering of infrared 
radiation by particles of an admixture. Thus, the correction for coherence is 
unimportant here. 

The effect considered is important for transparent colloid systems. 

Let us 
a system at 

indicatrix, 

Let us 

discuss two points: (a) distribution of light which is scattered by 
small angles forward 

caused by the scattering coherence. 

(6 Q, -A ); (b) deformation of the scattering 
2lrR 

assume that we have a conglomeration of very small particles 
(a << A), forming a particle with the radius R -- for example, a conglomeration 
of such a type was studied experimentally by L. M. Moroz and Ya. I. Frenkel' 
(Ref. 20). 

(a) We readily see from formula (8.56) that the intensity of light 
scattered by the system (conglomeration with the radius R) at the angles 

A will be I = IoN2f2(q), where q = f3 is a quantity on the order of Q,x 
unity. 
if we are considering the deviation of its inner field from the incident wave 
field, then the intensity distribution may be determined by the diffraction 
formula (see VI, 2). Figure 77 shows this curve by a solid line; our curve is 
shown by a dashed line. 

If our system is a solid particle with the radius R -- more precisely, 

In the direction 

A 

where q 
We find from (8.15) that qi coincides with the roots of the equation tg x = x. 

are zeros of the function f(q), the scattering intensity vanishes. i 

It is known that these roots are x 1 
while the zeros of the diffraction picture lie at x 

x3 = 10.17 ..., i.e., they are somewhat displaced. 

= 4.49 . . . , x2 = 7.72 ..., x3 = 10.90 ..., 
= 3.83 ..., x = 7.02 ..., 1 2 

(b) When the effect which we are considering (scattering coherence) is 
significant, the scattering indicatrix will be a Rayleigh indicatrix. Thus, 
for a conglomeration with R = 5 1  and N = 10 we find (A = 0.511) that the 
deviation from the Rayleigh curve will be 3% for an angle of 10". 
angles, the deviations from the Rayleigh curve rapidly increase. 
error in the forward direction amounts to N. 
lo" ,  the deviations from the Rayleigh curve will be small. 

Thus, the theory which we have developed is important for describing the 

_e /270 

For smaller 
The relative 

For angles which are greater than 

picture of scattering by a colloid system (a conglomeration of particles) at 
small angles in the forward direction. 
phenomena we have noted increase with an increase in the ratio A / & .  

We must emphasize the fact that the 
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Figure 77. 

Maxwell-Garnett. Such a comparison is 
aspects of the scattering phenomenon. 

The method of the "solid body" is 

Let us formulate the basic analysis 
result. The general formula (8 .54)  which 
we have obtained for the intensity of 
the scattered field correctly describes 

both limiting cases - +  m and - +  0 for 
a transparent system. 
us to calculate the scattering intensity 
in the intermediate region of values for 

R / A  (f % 1) , and to study the change 
from one limiting case to another. 

R R 
x x 

It also enables 

A dispersed system, such as a solid 
body, whose complex index of refraction 
is determined by suspended particles, 
was studied previously in the works of 
T. P. Kravets (Ref. 117) and Maxwell- 
Garnett (Ref. 118). T. P. Kravets in- 
vestigated the customary solutions, and 
Maxwell-Garnett investigated colloid 
systems. In colloid optics, the work of 
Mie is sometimes compared to the work of 
incorrect. We have investigated different 

the correct limiting case which is valid 
for small R/h (and, consequently, for small particles). Our analysis has con- 
structed a bridge between 
cability for non-coherent scattering, assumed in the calculations of Mie, and 
for the coherent scattering of T. P. Kravets and Maxwell-Garnett (for the case 
of transparent systems). 

both methods, and has established a region of appli- 
1271 

Let us now turn to the second approximation, and let us study the field 
change when it is extended within the system, in the sense of a "solid body" 
system. 

The electric field within the s o l  differs from the external field by the 
field which is produced by the s o l  particles which are electrically excited. 

The dipole moment which one particle acquires will be (4 .3) :  

Here E'  is the field which influences the particle.") If the number of parti- 
cles per unit volume is n, we obtain the following in the customary way for the 
dielectric constant: 

Strictly speaking, we must select the effective field as E'. In the 
approximation under consideration, it does not differ from the mean field. 
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L e t  us int roduce 
of absorpt ion i n  
vent" i s  assumed 

t h e  complex index of r e f r a c t i o n  of a tu rb id  medium 
t h i s  medium K. The complex r e f r a c t i v e  index f o r  a 
t o  equal  uni ty .  

Since t h e  c o e f f i c i e n t  c is  a complex number, t h i s  means t h a t  1 
is  an "absorbing"medium. 

m and t h e  index 
pure "sol- 

our medium 

W e  should recall t h a t  t h e  r e f r a c t i v e  index i s  K = - I m  G. The quant i ty  
3 3 1 c, /k-has  t h e  order a , whereas n = 7, where R is t h e  mean d is tance  between 

I Q  

p a r t i c l e s .  Ordinar i ly ,  

Retaining terms of 

n ($I<< 1. Thus, 4a - c1 << 1. 

ka 

!LJ 

t h e  f i r s t  order  with respec t  t o  ( a l a ) ,  w e  obtain 

Thus, t h e  absorpt ion c o e f f i c i e n t  f o r  t h e  f i e l d  w i l l  be  /272 

The i n t e n s i t y  decreases t w i c e  as f a s t ,  and i f  w e  relate it t o  one p a r t i c l e ,  
w e  ob ta in  p r e c i s e l y  t h e  same formula f o r  t h e  a t tenuat ion  c o e f f i c i e n t  as w e  pre- 
sented i n  Chapter I V  [formula (4.11)]. Thus, both systems reduce t o  one and 
t h e  s a m e  r e s u l t .  The f i e l d  a t tenuat ion  is caused by Rayleigh s c a t t e r i n g ,  along 
wi th  real absorption; t h e  Rayleigh s c a t t e r i n g  l eads  t o  t h e  occurrence of t h e  
imaginary p a r t  of t h e  r e f r a c t i v e  index. We must emphasize t h e  f a c t  t h a t  t h e  
conclusion drawn here  is v a l i d  f o r  d i l u t e  systems ( a  << R ) .  

I n  addi t ion  t o  t h e  case R % A ,  t h e r e  i s  another case when t h e  simple com- 
b i n a t i o n  of i n t e n s i t i e s  i s  inco r rec t .  This i s  t h e  case R 2, a. The particles 
may have an inf luence upon each o ther  here.  . T h i s  inf luence w i l l  be  considerable 
only i f  the p a r t i c l e s  are q u i t e  l a r g e  ( l a r g e  per turba t ion ,  which they introduce 
i n  t h e  f i e l d ) ,  o r  i f  t h e r e  i s  a g r e a t  number of them ( the  system has a l a r g e  
volume). Allowance f o r  t h e  mutual inf luence of the- p a r t i c l e s  r equ i r e s  a change 
t o  t h e  second approximation. 

I n  t h e  s implest  case of a system of two p a r t i c l e s ,  t h e  s i g n i f i c a n t  i n f l u -  
ence of one p a r t i c l e  upon another may b e  expected only i f  t h e  p a r t i c l e s  are 
q u i t e  l a rge .  
ou ts ide  of themselves a t  a d is tance  of %a. This means kha t  t h e  inf luence of 
p a r t i c l e s  upon each o ther  must be  expected a t  d is tances  of %4a between t h e  
centers of t h e  p a r t i c l e s .  I n  very t h i c k  systems, t h e  customary combination of 
i n t e n s i t i e s  is no t  v a l i d .  Trinks (Ref. 119) reached t h i s  conclusion by a very 
cumbersome method; h e  inves t iga ted  t h e  s c a t t e r i n g  of a plane wave by two spheres.  

W e  ind ica ted  above (VI, 2) t h a t  l a r g e  p a r t i c l e s  d i s t o r t  t h e  f i e l d  
. 
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CONCLUSION 

In t h i s  book, w e  have discussed t h e  theory of s c a t t e r i n g  and absorpt ion /273 
of electromagnetic waves i n  a t rans lucent  body. 
p a r t i c l e s  are not  very s m a l l ,  t h e  problem may be  pr imari ly  reduced t o  scatter- 
i n g  by a s i n g l e  p a r t i c l e .  

I f  t h e  d is tances  between 

Simple a n a l y t i c a l  formulas hold f o r  s m a l l  spheres.  They w e r e  presented i n  
Chapters IV and V I I I .  

For l a r g e  spheres,  one can confine oneself  t o  t h e  superposi t ion of a d i f -  
f r a c t e d  f i e l d  and t h e  f i e l d s  of geometric o p t i c s  (Chapters V I  and VII). 

The intermediate  cases must be  tabulated.  

I n  Chapter V I 1 1  w e  a l s o  presented simple formulas f o r  non-spherical p a r t i -  
cles. 

W e  would now l i k e  t o  say a few words regarding t h e  use of s c a t t e r e d  l i g h t  
f o r  studying suspended p a r t i c l e s .  This method has  several advantages, as com- 
pared with a l l  o t h e r  methods used f o r  t hese  purposes. 
advantage lies i n  t h e  f a c t  t h a t  p r a c t i c a l l y  no d i s t o r t i o n s  i n  t h e  ob jec t  t o  be  
s tud ied  are introduced. 
cesses occurring i n  t h e  system. 

The most s i g n i f i c a n t  

This makes i t  poss ib le  t o  trace t h e  d i f f e r e n t  pro- 

Thus, f o r  example, F. F .  Yudalevich s tudied t h e  k i n e t i c s  of t h e  p a r t i c l e  
enlargement by observing t h e  s c a t t e r i n g  i n t e n s i t y  a t  d i f f e r e n t  angles (Ref. 120) .  
L. V.  Smirnov and G. A. Zhirov s tudied  t h e  same process by continuously record- 
i n g  t h e  transparency i n  two s p e c t r a l  regions (Ref. 121) .  

Opt ical  methods can be  appl ied n o t  only f o r  studying suspended p a r t i c l e s ,  
but  a l s o  f o r  studying t h e  condi t ion of t h e  medium i n  which t h e  p a r t i c l e s  are 
suspended. Thus, f o r  example, i n  a study by t h e  author,  and I. Z. Gordon, M. G. 
Faynshteyn (Ref. 122) t h e  i n t e n s i t y  of tu rbulen t  mixing wi th in  a l a r g e  closed 
v e s s e l  w a s  measured by an o p t i c a l  method. 

I n  p r i n c i p l e ,  t h e  o p t i c a l  methods may be reduced t o  t h r e e  types of measure- /274 
ments: 

(a) Measurement of transparency; 

(b) Measurement of t h e  s c a t t e r i n g  i n d i c a t r i x ;  

(e) Measurement of t h e  degree of p o l a r i z a t i o n  f o r  s c a t t e r e d  l i g h t .  

It i s  d e s i r a b l e  t o  perform a l l  measurements wi th  monochromatic l i g h t .  
Di f fe ren t  methods may be  appl ied t o  p a r t i c l e s  having d i f f e r e n t  dimensions: 

1. p << 1. It is only poss ib le  t o  measure transparency here.  W e  thus  - 
6 obta in  a . 
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2. For l a r g e r  p a r t i c l e s ,  w e  may employ a l l  t h r e e  methods. Methods (b) 
and (c) ( i f  t h e  measurements are performed a t  d i f f e r e n t  angles) ,  i n  p r i n c i p l e  
make it poss ib le  t o  determine t h e  d i s t r i b u t i o n  funct ion of p a r t i c l e s  by s i z e .  

When p increases  from zero t o  uni ty ,  t h e  displacement of t h e  angle of maxi- 
mum polar iza t ion  occurs uniformly (see Chapters V I  and VII). 
with a simple method f o r  studying suspended p a r t i c l e s .  
V.  A. Gavrilov (Ref. 1 2 3 ) .  

This provides us 
It w a s  employed by 

A very e f f e c t i v e  research method f o r  l a r g e  p a r t i c l e s  (determination of t h e  
d i s t r i b u t i o n  funct ion,  e t c . )  c o n s i s t s  of studying t h e  s c a t t e r i n g  a t  s m a l l  
angles.  

3. For extremely l a r g e  p a r t i c l e s ,  i n  addi t ion  t o  t h e  methods presented i n  
Section 2 ,  it is  a l s o  e f f e c t i v e  t o  measure t h e  coronas and t h e  f i r s t  rainbow. 
On t h e  o the r  hand, i f  t h e  p a r t i c l e s  are access ib l e ,  w e  can employ o p t i c a l  micro- 
scopes. 
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